forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCopyKernel.cpp
131 lines (125 loc) · 5.42 KB
/
CopyKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#include <ATen/core/op_registration/op_allowlist.h>
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/native/Copy.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/Loops.h>
#include <c10/util/TypeCast.h>
#include <ATen/native/cpu/zmath.h>
namespace at {
namespace native {
namespace {
static void copy_kernel(TensorIterator& iter, bool non_blocking) {
ScalarType dtype = iter.dtype(0);
if (dtype == iter.dtype(1)) {
// TODO: as the majority of these operations can be done treating
// their datatypes as opaque bit patterns, we don't actually need
// separate instantiations per dtype; we only need a separate
// instantiation per dtype size. This would probably save us a
// little bit of code size here
// TODO: not sure if optimizer is able to compile two levels of
// conditionals into a single jump table. We should have a
// single jump table here; might be worth just writing out the
// dispatch statement by hand instead of using AT_DISPATCH
if (iter.tensor(0).is_neg() == iter.tensor(1).is_neg()) {
if (dtype == ScalarType::Half) {
cpu_kernel(iter, [=](at::Half a) -> at::Half { return a; });
} else if (dtype == ScalarType::ComplexHalf) {
cpu_kernel(iter, [=](c10::complex<at::Half> a) -> c10::complex<at::Half> { return a; });
} else if (isQIntType(dtype)) {
AT_DISPATCH_QINT_TYPES(dtype, "copy_kernel", [&] {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return a; },
[=](Vectorized<scalar_t> a) -> Vectorized<scalar_t> { return a; });
});
} else if (isComplexType(dtype)) {
// This case should never actually happen since currently there's no way to get a complex tensor
// with negative bit.
if (iter.tensor(0).is_conj() == iter.tensor(1).is_conj()) {
AT_DISPATCH_COMPLEX_TYPES(dtype, "copy_kernel", [&] {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return a; },
[=](Vectorized<scalar_t> a) -> Vectorized<scalar_t> { return a; });
});
} else {
AT_DISPATCH_COMPLEX_TYPES(dtype, "conj_kernel", [&] {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return conj_impl(a); },
[=](Vectorized<scalar_t> a) -> Vectorized<scalar_t> { return a.conj(); });
});
}
} else {
AT_DISPATCH_ALL_TYPES_AND2(
ScalarType::Bool, ScalarType::BFloat16,dtype, "copy_kernel", [&] {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return a; },
[=](Vectorized<scalar_t> a) { return a; });
});
}
} else {
if (dtype == ScalarType::Half) {
cpu_kernel(iter, [=](at::Half a) -> at::Half { return -a; });
} else if (isComplexType(dtype)) {
if (iter.tensor(0).is_conj() == iter.tensor(1).is_conj()) {
AT_DISPATCH_COMPLEX_TYPES(dtype, "copy_kernel", [&] {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return -a; },
[=](Vectorized<scalar_t> a) -> Vectorized<scalar_t> { return a.neg(); });
});
} else {
AT_DISPATCH_COMPLEX_TYPES(dtype, "conj_kernel", [&] {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return -1 * conj_impl(a); },
[=](Vectorized<scalar_t> a) -> Vectorized<scalar_t> { return a.neg().conj(); });
});
}
} else {
AT_DISPATCH_ALL_TYPES_AND2(
ScalarType::Bool, ScalarType::BFloat16,dtype, "copy_kernel", [&] {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return -a; },
[=](Vectorized<scalar_t> a) -> Vectorized<scalar_t> { return a.neg(); });
});
}
}
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16, dtype, "copy_", [&] {
using dest_t = scalar_t;
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16, iter.dtype(1), "copy_", [&] {
// Note (@zasdfgbnm):
//
// The code below can not be simplified as
// cpu_kernel(iter, c10::static_cast_with_inter_type<dest_t, scalar_t>::apply);
//
// because this would force the compiler to instantiate the inline function and generate a function call in the loop
// instead of inlining it, making all the optimizations like vectorization impossible.
// You can verify this by looking the the symbols of `libtorch_cpu.so`:
//
// readelf -Ws libtorch_cpu.so | grep static_cast_with_inter_type
//
// If done correctly, the above command should have no output.
//
// See: https://github.com/pytorch/pytorch/issues/31271
cpu_kernel(iter, [](scalar_t src) -> dest_t {
return c10::static_cast_with_inter_type<dest_t, scalar_t>::apply(src); });
});
});
if (iter.tensor(0).is_conj() != iter.tensor(1).is_conj()) {
iter.tensor(0).conj_physical_();
}
if (iter.tensor(0).is_neg() != iter.tensor(1).is_neg()) {
iter.tensor(0).neg_();
}
}
}
} // anonymous namespace
REGISTER_DISPATCH(copy_stub, ©_kernel);
} // namespace native
} // namespace at