-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGOANA_Plot.R
71 lines (62 loc) · 3.01 KB
/
GOANA_Plot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
GOANA_Plot <- function(file.in="GOANA_GO_Summary.csv", ana = "GO", rlvl.x = NA, rlvl.y=NA, output = "GOANA_plot", x=12, y=12, top=NA){
##This program was written to generate a plot output from GOANA_Summary.R
##This is the 3rd of 3 programs for GO/KEGG enrichment.
##GOANA_Plot.R written by Matthew J. Brooks, last modified March 23rd, 2017
####USAGE####
# file.in = file from GOANA_Summary output, ex. "GOANA-BP_GO_Summary.csv"
# ana = either "GO" for gene ontology or "KG" for Kegg
# rlvl.x = numberic list contaning the rearanged row numbers for the x-axis, ex. c(3,5,6,1,2,4)
# rlvl.y = numberic list contaning the rearanged row numbers for the y-axis, ex. c(7,6,8,1,10,5,11,9,3,12,4,2)
# output = character string of the file name for the plot, example: "GOANA_plot"
# x = width of output pdf in inches, example: 12
# y = height of output pdf in inches, example: 12
# top = the maximum number of GO categories per group to display
goana.sum <- read.csv(file.in)
# Plot function
gk.plot<-function(x){
require(ggplot2)
p<-ggplot(x, aes(x=TP, y=factor(GO.term, levels=rev(GO.term)), color = FDR, size=Ratio), )
p <- p + geom_point() + scale_colour_gradient(low = "red", high = "blue")
style <- element_text(color = "black", size = 10)
p<-p+theme(axis.text.x = style, axis.text.y = style,
axis.title.x = element_blank(), axis.title.y = element_blank())
plot (p)
}
#Make data.frame for plot function
if (ana == "KG"){
GO.tmp <- data.frame(goana.sum[,2:3])
TP.tmp <- data.frame(do.call('rbind', strsplit(as.character(goana.sum[,1]), '\\.\\d+', perl=TRUE,fixed=FALSE)))
goana.plot <- data.frame(GOIDs=GO.tmp$X, GO.term=GO.tmp$Pathway, FDR=goana.sum$FDR,
TP=TP.tmp[,1], Ratio=goana.sum[,5]/goana.sum[,4])
} else {
GO.tmp <- data.frame(goana.sum[,2:3])
TP.tmp <- data.frame(do.call('rbind', strsplit(as.character(goana.sum[,1]), '\\.\\d', perl=TRUE, fixed=FALSE)))
goana.plot <- data.frame(GOIDs=GO.tmp$X, GO.term=GO.tmp$Term, FDR=goana.sum$FDR,
TP=TP.tmp[,1], Ratio=goana.sum[,6]/goana.sum[,5])
}
#Take the top members of each cluster, if necessary
if (!is.na(top)[1]) {
top.tmp <- c()
top.rows <- as.factor(goana.plot$TP)
for (i in levels(top.rows)){
top.tmp <- rbind(top.tmp, goana.plot[goana.plot$TP == i,][1:top,])
top.tmp <- top.tmp[!is.na(top.tmp$GOIDs),]
}
goana.plot <- top.tmp
}
#Relevel the x-axis
if (!is.na(rlvl.x)[1]){
ord <- rlvl.x[rlvl.x %in% goana.plot$TP]
ord <- match(ord, levels(goana.plot$TP))
goana.plot$TP <- factor(goana.plot$TP, levels=levels(goana.plot$TP)[ord])
goana.plot <- goana.plot[order(goana.plot$TP),]
}
#Relevel the y-axis
if (!is.na(rlvl.y)[1]){
goana.plot$GO.term <- factor(goana.plot$GO.term, levels=levels(goana.plot$GO.term)[rlvl.y])
}
#Plot graph
pdf(file=paste(output, ".pdf", sep=""), width=x, height=y, useDingbats = F)
gk.plot(goana.plot)
dev.off()
}