-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPCA_simple.R
61 lines (51 loc) · 1.84 KB
/
PCA_simple.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
pca_simple <- function(dat, gp, pc.x=1, pc.y=2, clr, expt.nm, res.path = "../data/processed/", center=TRUE, scale=TRUE, ret=T){
#############################################
# Written by MJB on Sept 20th, 2019, last modified on
# dat = data for performing the PCA
# gp = factor of the grouping
# pc.x = number, PC to display on x-axis, default = 1
# pc.y = number, PC to display on y-axis, default = 2
# col = vector of colors to be used
# expt.nm = experiment name to be used in the subtitle and export file
# center = logical, center the data
# scale = logical, scale the data
# ret = logical to return the plot
#############################################
library(ggplot2)
#Make PCA of original data
pca <- prcomp(t(dat), center=center, scale=scale)
#Get varaince percentages
pc.pca <- pca$sdev^2 / sum(pca$sdev^2) * 100;
pc.pca <- round(pc.pca, digits=2)
#Plot PCA
p <- ggplot(data.frame(pca$x), aes_string(paste0("PC", pc.x), paste0("PC", pc.y))) +
geom_point(aes(color = gp), size = 6) +
labs(size = NULL, color = "Group",
x=paste0("PC", pc.x, " (", pc.pca[pc.x],"%)"),
y=paste0("PC", pc.y, " (", pc.pca[pc.y],"%)")) +
geom_text(aes(label = gsub(".+_(\\d)$", "\\1", row.names(pca$x)))) +
scale_color_manual(values = unique(clr)) +
labs(subtitle = paste0("PCA - ", expt.nm))
# Export plot
pdf(paste0(res.path, expt.nm, "_pca.pdf"),
width = 8,
height = 6,
useDingbats = F)
print(p)
dev.off()
# Return plot if needed
if (ret == TRUE){
return(p)
}
}
# Testing variables #################
# dat <- dge$lcpm
# gp <- gene_dge_e2$samples$group
# clr <- colorsSamp_e2[4:12]
# expt.nm <- "Expt_2"
# dge <- gene_dge_e2
# center=T
# scale=T
# res.path = "../data/processed/"
# ret = T
####################################