-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathParallelPlot.R
57 lines (48 loc) · 1.97 KB
/
ParallelPlot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
ParPlot<-function (eset, cl, ord=NA, mfrow = c(1, 1), col.cl = "blue", xlabels, ylabel, file.nm=fname) {
##This function creates a pdf file of parallel plots with a mean-line for your cluster analysis.
##Written by Matthew Brooks, last modified March 23rd, 2017.
####USAGE####
#eset = matrix of expression values, e.g. rows (gene) x columns (samples)
#cl = vector of clusters for each row in the matrix
#ord = order for the cluster plots to be displayed, numerical by default
#mfrow = rows and columns for the final plot arrangement
#col.cl = vector of mean-line colors
#xlabels = vector of x-axis tick lables for the plots, e.g. c('P2', 'P4', 'P6', 'P10')
#ylabel = character for the y-axis title label, e.g. "Z-score", "CPM (log2)"
#file.nm = name for pdf
#############
clusterindex <- cl
#Specify the ordering of the plots
if(!is.na(max(ord))){
}else{
ord=c(1:max(cl))
}
#PDF of the parallel plots
pdf(paste(file.nm, "pdf", sep = "."), width = 3 * mfrow[2], height = 3 * mfrow[1], useDingbats = F)
par(mfrow = mfrow)
for (j in ord) {
tmp <- eset[clusterindex == j, ]
ymin <- min(tmp)
ymax <- max(tmp)
par(las=2)
#Main plot command
plot.default(x = NA, xlim = c(1, dim(eset)[[2]]),
ylim = c(ymin, ymax), xlab = "Age", ylab = "Z-score", cex.lab=1.5,
main = paste("Cluster ", j, " (n = ",dim(tmp)[[1]],")", sep=""), cex.main=2, axes = FALSE)
#Add labels to x-axis
if (missing(xlabels)) {
axis(1, 1:dim(eset)[[2]], c(1:dim(eset)[[2]]))
axis(2)
} else {
axis(1, 1:dim(eset)[[2]], xlabels)
axis(2)
}
#Add data lines to the plot
for (k in 1:dim(tmp)[[1]]) {
lines(c(1:dim(tmp)[[2]]), tmp[k,], col = "gray")
}
#Add mean-line
lines(apply(tmp,2,mean), col = col.cl[j], lwd=2)
}
dev.off()
}