-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathkitti.py
157 lines (119 loc) · 6.54 KB
/
kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import cv2
import numpy as np
import torch.utils.data
from utils import disp2pc, project_pc2image, load_flow_png, load_disp_png, load_calib, zero_padding
from augmentation import joint_augmentation
class KITTI(torch.utils.data.Dataset):
def __init__(self, cfgs):
assert os.path.isdir(cfgs.root_dir)
assert cfgs.split in ['training200', 'training160', 'training40', 'testing200']
if 'training' in cfgs.split:
self.root_dir = os.path.join(cfgs.root_dir, 'training')
else:
self.root_dir = os.path.join(cfgs.root_dir, 'testing')
self.split = cfgs.split
self.cfgs = cfgs
if self.split == 'training200' or self.split == 'testing200':
self.indices = np.arange(200)
elif self.split == 'training160':
self.indices = [i for i in range(200) if i % 5 != 0]
elif self.split == 'training40':
self.indices = [i for i in range(200) if i % 5 == 0]
def __len__(self):
return len(self.indices)
def __getitem__(self, i):
if not self.cfgs.augmentation.enabled:
np.random.seed(23333)
index = self.indices[i]
data_dict = {'index': index}
proj_mat = load_calib(os.path.join(self.root_dir, 'calib_cam_to_cam', '%06d.txt' % index))
f, cx, cy = proj_mat[0, 0], proj_mat[0, 2], proj_mat[1, 2]
image1 = cv2.imread(os.path.join(self.root_dir, 'image_2', '%06d_10.png' % index))[..., ::-1]
image2 = cv2.imread(os.path.join(self.root_dir, 'image_2', '%06d_11.png' % index))[..., ::-1]
data_dict['input_h'] = image1.shape[0]
data_dict['input_w'] = image1.shape[1]
flow_2d, flow_2d_mask = load_flow_png(os.path.join(self.root_dir, 'flow_occ', '%06d_10.png' % index))
disp1, mask1 = load_disp_png(os.path.join(self.root_dir, 'disp_occ_0', '%06d_10.png' % index))
disp2, mask2 = load_disp_png(os.path.join(self.root_dir, 'disp_occ_1', '%06d_10.png' % index))
mask = np.logical_and(np.logical_and(mask1, mask2), flow_2d_mask)
pc1 = disp2pc(disp1, baseline=0.54, f=f, cx=cx, cy=cy)[mask]
pc2 = disp2pc(disp2, baseline=0.54, f=f, cx=cx, cy=cy, flow=flow_2d)[mask]
flow_3d = pc2 - pc1
flow_3d_mask = np.ones(flow_3d.shape[0], dtype=np.float32)
# remove out-of-boundary regions of pc2 to create occlusion
image_h, image_w = disp2.shape[:2]
xy2 = project_pc2image(pc2, image_h, image_w, f, cx, cy, clip=False)
boundary_mask = np.logical_and(
np.logical_and(xy2[..., 0] >= 0, xy2[..., 0] < image_w),
np.logical_and(xy2[..., 1] >= 0, xy2[..., 1] < image_h)
)
pc2 = pc2[boundary_mask]
flow_2d = np.concatenate([flow_2d, flow_2d_mask[..., None].astype(np.float32)], axis=-1)
flow_3d = np.concatenate([flow_3d, flow_3d_mask[..., None].astype(np.float32)], axis=-1)
# images from KITTI have various sizes, padding them to a unified size of 1242x376
padding_h, padding_w = 376, 1242
image1 = zero_padding(image1, padding_h, padding_w)
image2 = zero_padding(image2, padding_h, padding_w)
flow_2d = zero_padding(flow_2d, padding_h, padding_w)
# data augmentation
image1, image2, pc1, pc2, flow_2d, flow_3d, f, cx, cy = joint_augmentation(
image1, image2, pc1, pc2, flow_2d, flow_3d, f, cx, cy, self.cfgs.augmentation,
)
# random sampling
indices1 = np.random.choice(pc1.shape[0], size=self.cfgs.n_points, replace=pc1.shape[0] < self.cfgs.n_points)
indices2 = np.random.choice(pc2.shape[0], size=self.cfgs.n_points, replace=pc2.shape[0] < self.cfgs.n_points)
pc1, pc2, flow_3d = pc1[indices1], pc2[indices2], flow_3d[indices1]
pcs = np.concatenate([pc1, pc2], axis=1)
images = np.concatenate([image1, image2], axis=-1)
data_dict['images'] = images.transpose([2, 0, 1])
data_dict['flow_2d'] = flow_2d.transpose([2, 0, 1])
data_dict['pcs'] = pcs.transpose()
data_dict['flow_3d'] = flow_3d.transpose()
data_dict['intrinsics'] = np.float32([f, cx, cy])
return data_dict
class KITTITest(torch.utils.data.Dataset):
def __init__(self, cfgs):
assert os.path.isdir(cfgs.root_dir)
assert cfgs.split in ['testing200']
self.root_dir = os.path.join(cfgs.root_dir, 'testing')
self.split = cfgs.split
self.cfgs = cfgs
def __len__(self):
return 200
def __getitem__(self, index):
np.random.seed(23333)
data_dict = {'index': index}
proj_mat = load_calib(os.path.join(self.root_dir, 'calib_cam_to_cam', '%06d.txt' % index))
f, cx, cy = proj_mat[0, 0], proj_mat[0, 2], proj_mat[1, 2]
image1 = cv2.imread(os.path.join(self.root_dir, 'image_2', '%06d_10.png' % index))[..., ::-1]
image2 = cv2.imread(os.path.join(self.root_dir, 'image_2', '%06d_11.png' % index))[..., ::-1]
data_dict['input_h'] = image1.shape[0]
data_dict['input_w'] = image1.shape[1]
disp1, mask1 = load_disp_png(os.path.join(self.root_dir, 'disp_%s' % self.cfgs.disp_provider, '%06d_10.png' % index))
disp2, mask2 = load_disp_png(os.path.join(self.root_dir, 'disp_%s' % self.cfgs.disp_provider, '%06d_11.png' % index))
# ignore top 110 rows without evaluation
mask1[:110] = 0
mask2[:110] = 0
pc1 = disp2pc(disp1, baseline=0.54, f=f, cx=cx, cy=cy)[mask1]
pc2 = disp2pc(disp2, baseline=0.54, f=f, cx=cx, cy=cy)[mask2]
# limit max height (2.0m)
pc1 = pc1[pc1[..., 1] > -2.0]
pc2 = pc2[pc2[..., 1] > -2.0]
# limit max depth
pc1 = pc1[pc1[..., -1] < self.cfgs.max_depth]
pc2 = pc2[pc2[..., -1] < self.cfgs.max_depth]
# images from KITTI have various sizes, padding them to a unified size of 1242x376
padding_h, padding_w = 376, 1242
image1 = zero_padding(image1, padding_h, padding_w)
image2 = zero_padding(image2, padding_h, padding_w)
# random sampling
indices1 = np.random.choice(pc1.shape[0], size=self.cfgs.n_points, replace=pc1.shape[0] < self.cfgs.n_points)
indices2 = np.random.choice(pc2.shape[0], size=self.cfgs.n_points, replace=pc2.shape[0] < self.cfgs.n_points)
pc1, pc2 = pc1[indices1], pc2[indices2]
pcs = np.concatenate([pc1, pc2], axis=1)
images = np.concatenate([image1, image2], axis=-1)
data_dict['images'] = images.transpose([2, 0, 1])
data_dict['pcs'] = pcs.transpose()
data_dict['intrinsics'] = np.float32([f, cx, cy])
return data_dict