-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
502 lines (448 loc) · 19.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import datasets.thumos14 as thumos
import util.misc as utils
from datasets import build_dataset
from datasets.thumos14_eval import eval_props
from engine import evaluate, train_one_epoch
from models import build_model
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector',
add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--lr_drop', default=30, type=int)
parser.add_argument('--clip_max_norm',
default=0.1,
type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument(
'--frozen_weights',
type=str,
default=None,
help='Path to the pretrained model, only the mask head will be trained'
)
# * Backbone
parser.add_argument('--backbone',
default='resnet50',
type=str,
help='Name of the convolutional backbone to use')
parser.add_argument(
'--position_embedding',
default='sine',
type=str,
choices=('sine', 'learned'),
help='Type of positional embedding to use on top of the image features'
)
# * Transformer
parser.add_argument('--enc_layers',
default=3,
type=int,
help='Number of encoding layers in the transformer')
parser.add_argument('--dec_layers',
default=6,
type=int,
help='Number of decoding layers in the transformer')
parser.add_argument(
'--dim_feedforward',
default=2048,
type=int,
help='Intermediate size of the FFN in the transformer blocks')
parser.add_argument(
'--hidden_dim',
default=512,
type=int,
help='Size of the embeddings (dimension of the transformer)')
parser.add_argument('--dropout',
default=0.1,
type=float,
help='Dropout applied in the transformer')
parser.add_argument(
'--nheads',
default=8,
type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries',
default=100,
type=int,
help='Number of query slots')
parser.add_argument('--pre_norm', action='store_true')
# Loss
parser.add_argument(
'--no_aux_loss',
dest='aux_loss',
action='store_false',
help='Disables auxiliary decoding losses (loss at each layer)')
# * Matcher
parser.add_argument('--set_cost_class',
default=1,
type=float,
help='Class coefficient in the matching cost')
parser.add_argument('--set_cost_bbox',
default=5,
type=float,
help='L1 box coefficient in the matching cost')
parser.add_argument('--set_cost_giou',
default=2,
type=float,
help='giou box coefficient in the matching cost')
# * Loss coefficients
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--iou_loss_coef', default=100, type=float)
parser.add_argument(
'--eos_coef',
default=0.1,
type=float,
help='Relative classification weight of the no-object class')
parser.add_argument('--relax_rule', default='topk', type=str)
parser.add_argument('--relax_thresh', default=0.7, type=float)
# dataset parameters
parser.add_argument('--dataset_file', default='thumos14')
parser.add_argument('--window_size', default=100, type=int)
parser.add_argument('--interval', default=5, type=int)
parser.add_argument('--gt_size', default=100, type=int)
parser.add_argument('--feature_path',
default='data/I3D_features',
type=str)
parser.add_argument('--tem_path', default='data/TEM_scores', type=str)
parser.add_argument('--annotation_path',
default='datasets/thumos14_anno_action.json',
type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--point_prob_normalize', action='store_true')
parser.add_argument('--absolute_position', action='store_true')
parser.add_argument('--stage',
default=1,
type=int,
help='stage-id of RTD-Net')
parser.add_argument('--output_dir',
default='outputs/',
help='path where to save, empty for no saving')
parser.add_argument('--device',
default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--load', default='', help='load checkpoint')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch',
default=0,
type=int,
metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size',
default=1,
type=int,
help='number of distributed processes')
parser.add_argument('--dist_url',
default='env://',
help='url used to set up distributed training')
return parser
def draw(split, loss_dict, axs, epoch, color):
keys = loss_dict.keys()
for k in keys:
axs[k].set_title(k)
if epoch == 0:
axs[k].plot(loss_dict[k], color=color, label=k)
else:
axs[k].plot(loss_dict[k], color=color)
plt.pause(0.001)
def draw_stats(axes, stats, epoch, colordict):
for k, v in stats.items():
if len(epoch) == 1:
axes.plot(v, color=colordict[k], label=k)
else:
axes.plot(v, color=colordict[k])
plt.pause(0.001)
def main(args):
utils.init_distributed_mode(args)
print('git:\n {}\n'.format(utils.get_sha()))
print(args)
device = torch.device(args.device)
print(device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessors = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters()
if p.requires_grad)
print('number of params:', n_parameters)
if args.stage == 1:
for name, value in model_without_ddp.named_parameters():
if 'iou' in name:
value.requires_grad = False
learned_params = filter(lambda p: p.requires_grad,
model_without_ddp.parameters())
elif args.stage == 2:
for name, value in model_without_ddp.named_parameters():
if 'class_embed' not in name:
value.requires_grad = False
head_params = filter(lambda p: p.requires_grad,
model_without_ddp.parameters())
learned_params = list(head_params)
else:
for name, value in model_without_ddp.named_parameters():
if 'iou' not in name:
value.requires_grad = False
head_params = filter(lambda p: p.requires_grad,
model_without_ddp.parameters())
learned_params = list(head_params)
optimizer = torch.optim.AdamW(learned_params,
lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train,
args.batch_size,
drop_last=True)
data_loader_train = DataLoader(dataset_train,
batch_sampler=batch_sampler_train,
collate_fn=thumos.collate_fn,
num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val,
args.batch_size,
sampler=sampler_val,
drop_last=False,
collate_fn=thumos.collate_fn,
num_workers=args.num_workers)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.rtd.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(args.resume,
map_location='cpu',
check_hash=True)
else:
print(("=> loading checkpoint '{}'".format(args.resume)))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
pretrained_dict = checkpoint['model']
# only resume part of model parameter
model_dict = model_without_ddp.state_dict()
pretrained_dict = {
k: v
for k, v in pretrained_dict.items() if k in model_dict
}
model_dict.update(pretrained_dict)
model_without_ddp.load_state_dict(model_dict)
# main_model.load_state_dict(checkpoint['state_dict'])
print(("=> loaded '{}' (epoch {})".format(args.resume,
checkpoint['epoch'])))
if args.load:
checkpoint = torch.load(args.load, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if args.eval:
evaluator, eval_loss_dict = evaluate(model, criterion, postprocessors,
data_loader_val, device, args)
res = evaluator.summarize()
test_stats, results_pd = eval_props(res)
print('test_stats', test_stats)
if args.output_dir:
results_pd.to_csv(args.output_dir + 'results_eval.csv')
return
print('Start training')
start_time = time.time()
fig1 = plt.figure('train', figsize=(18.5, 10.5))
ax1_train = fig1.add_subplot(231)
ax2_train = fig1.add_subplot(232)
ax3_train = fig1.add_subplot(233)
ax4_train = fig1.add_subplot(234)
ax5_train = fig1.add_subplot(235)
ax6_train = fig1.add_subplot(236)
axs_train = {
'loss_ce': ax1_train,
'loss_bbox': ax2_train,
'loss_giou': ax3_train,
'cardinality_error': ax4_train,
'class_error': ax5_train,
'loss_iou': ax6_train
}
fig2 = plt.figure('eval', figsize=(18.5, 10.5))
ax1_eval = fig2.add_subplot(231)
ax2_eval = fig2.add_subplot(232)
ax3_eval = fig2.add_subplot(233)
ax4_eval = fig2.add_subplot(234)
ax5_eval = fig2.add_subplot(235)
ax6_eval = fig2.add_subplot(236)
axs_eval = {
'loss_ce': ax1_eval,
'loss_bbox': ax2_eval,
'loss_giou': ax3_eval,
'cardinality_error': ax4_eval,
'class_error': ax5_eval,
'loss_iou': ax6_eval
}
colordict = {
'50': 'g',
'100': 'b',
'200': 'purple',
'500': 'orange',
'1000': 'brown'
}
fig3 = plt.figure('test_AR')
axs_test = fig3.add_subplot(111)
epoch_list = []
train_loss_list = {}
eval_loss_list = {}
test_stats_list = {}
best_ar50 = 0
best_sum_ar = 0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats, train_loss_dict = train_one_epoch(model, criterion,
data_loader_train,
optimizer, device,
epoch, args)
for key, value in train_loss_dict.items():
if key in [
'loss_ce', 'loss_bbox', 'loss_giou', 'cardinality_error',
'class_error', 'loss_iou'
]:
try:
train_loss_list[key].append(value.mean())
except KeyError:
train_loss_list[key] = [value.mean()]
lr_scheduler.step()
if epoch % 50 == 0 and args.output_dir:
checkpoint_path = output_dir / 'checkpoint_epoch{}.pth'.format(
epoch)
utils.save_on_master(
{
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0:
checkpoint_paths.append(output_dir /
f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master(
{
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
evaluator, eval_loss_dict = evaluate(model, criterion, postprocessors,
data_loader_val, device, args)
res = evaluator.summarize()
test_stats, results_pd = eval_props(res)
for k, v in test_stats.items():
try:
test_stats_list[k].append(float(v) * 100)
except KeyError:
test_stats_list[k] = [float(v) * 100]
for key, value in eval_loss_dict.items():
if key in [
'loss_ce', 'loss_bbox', 'loss_giou', 'cardinality_error',
'class_error', 'loss_iou'
]:
try:
eval_loss_list[key].append(value.mean())
except KeyError:
eval_loss_list[key] = [value.mean()]
print('test_stats', test_stats)
# debug
# if args.output_dir:
# results_pd.to_csv(args.output_dir+'results_epoch_{}.csv'.format(epoch))
log_stats = {
**{f'train_{k}': v
for k, v in train_stats.items()},
**{f'test_AR@{k}': v
for k, v in test_stats.items()}, 'epoch': epoch,
'n_parameters': n_parameters
}
if (float(test_stats['50']) > best_ar50):
best_ar50 = float(test_stats['50'])
with (output_dir / 'log_best_ar50.txt').open('w') as f:
f.write(json.dumps(log_stats) + '\n')
checkpoint_path = output_dir / 'checkpoint_best_ar50.pth'
utils.save_on_master(
{
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
current_sum_ar = float(test_stats['50']) + float(
test_stats['100']) + float(test_stats['200'])
if (current_sum_ar > best_sum_ar):
best_sum_ar = current_sum_ar
with (output_dir / 'log_best_sum_ar.txt').open('w') as f:
f.write(json.dumps(log_stats) + '\n')
checkpoint_path = output_dir / 'checkpoint_best_sum_ar.pth'
utils.save_on_master(
{
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
if args.output_dir and utils.is_main_process():
with (output_dir / 'log.txt').open('a') as f:
f.write(json.dumps(log_stats) + '\n')
epoch_list.append(epoch)
if epoch % 2 == 0:
# split, loss_dict, axs, epoch, color_dict
draw_stats(axs_test, test_stats_list, epoch_list, colordict)
axs_test.legend()
draw('train', train_loss_list, axs_train, epoch, 'b')
draw('eval', eval_loss_list, axs_eval, epoch, 'g')
fig1.savefig('train_loss_curve.jpg', dpi=300)
fig2.savefig('eval_loss_curve.jpg', dpi=300)
fig3.savefig('test_ar.jpg')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('RTD-Net training and evaluation script',
parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)