-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun.py
457 lines (386 loc) · 17.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
'''
Module with functions to run subprocesses and manage files
Also point of entry to run over external data
'''
from sys import argv
import sys
import traceback
import time
from datetime import date
import os
import json
from os.path import join as path_join
import shutil
import glob
import subprocess
from tqdm import tqdm
import nibabel as nib
import cv2 as cv
import numpy as np
from utils import viewnii, normalizeMri, file_dialog, alert_dialog, confirm_dialog, error_dialog, chunks
from dataset import mni_adni, default_adni, default_harp, mni_harp, HARP, HARP_CLASSES
from transforms import run_once, mni152reg, MNI_BUFFER_MATRIX_PATH, REGWorker
from get_models import get_models
from multiprocessing import Queue, Process, cpu_count
PRE_REGISTER_VOL_PATH = os.path.normpath('cache/pre_register_vol.nii.gz')
PRE_REGISTER_MASK_PATH = os.path.normpath('cache/pre_register_mask.nii.gz')
INVERSE_MATRIX_PATH = os.path.normpath('cache/invmnibuffer.mat')
TEMP_MASK_PATH = os.path.normpath('cache/mask.nii.gz')
MASKS_FOLDER = "e2dhipseg_masks"
if not os.path.isdir('cache'): os.mkdir('cache')
if not os.path.isdir(MASKS_FOLDER): os.mkdir(MASKS_FOLDER)
def generate_stds():
'''
Walks through folders saving standard deviations (for old experiments without it)
Folder hardcoded, this will run only once
'''
iterator = glob.iglob(os.path.join('/', "home", "diedre", "Dropbox", "anotebook", "models", "**", "*cons.txt"),
recursive=True)
for f in iterator:
dataset = os.path.basename(f).split('0.')
if len(dataset) == 1: # skipping old cons files
continue
print(dataset[0])
print(f)
with open(f, 'r') as fil:
whole_file = fil.read()
split_final_result = whole_file.split("Final result: ")
mean = float(split_final_result[-1])
consensus_list = np.array(json.loads(split_final_result[0])[-1])
std = consensus_list.std()
new_mean = consensus_list.mean()
assert mean == new_mean
print("consensus array: {}".format(consensus_list))
print("saved mean: {} recalculated mean: {}".format(mean, new_mean))
new_path = f.split(".txt")[0] + "_" + "std" + str(std) + ".txt"
with open(new_path, 'a+') as new_fil:
new_fil.write(whole_file)
new_fil.write("std: {}".format(std))
print("---------")
def hippodeep(folder="/home/diedre/git/hippodeep", display=False):
'''
Folder is where to look for .nii.gz files to run hippodeep
'''
with open("/home/diedre/git/diedre/logs/hippodeep_runs_{}.txt".format(time.ctime()), 'w') as logfile:
for f in tqdm(glob.glob(os.path.join(folder, "*.nii.gz"))):
try:
path = os.path.basename(f)[:5]
if path != "bruna" and path != "BRUNA":
print("Skipping {}".format(f))
print(f)
subprocess.run(["sh", "deepseg3.sh", os.path.basename(f)], stdout=logfile)
if display:
result = nib.load(f[:-7] + "_mask_L.nii.gz").get_fdata() + nib.load(f[:-7] + "_mask_R.nii.gz").get_fdata()
result[result > 1] = 1
viewnii(normalizeMri(nib.load(f).get_fdata()), result)
cv.destroyAllWindows()
except Exception as e:
print("HIPPODEEP FATAL ERROR: {}".format(e))
quit()
def dcm2niix(folder):
'''
Runs external dcm2niix utility on given folder
'''
subprocess.run(["/home/diedre/Downloads/NITRC-mricrogl-Downloads/mricrogl_linux/mricrogl_lx/dcm2niix", folder])
def freesurfer(folder, _format=".nii.gz", ncpu=None):
'''
Runs freesurfer run-all on a folder
'''
ncpus = cpu_count() if ncpu is None else ncpu
to_process = glob.glob(path_join(folder, "*" + _format))
number_of_jobs = len(to_process)
assert number_of_jobs > 0
print("Detected following volumes to process: {}".format(to_process))
batch_size = number_of_jobs//ncpus
if batch_size == 0:
batch_size = 1
print("Number of available threads: {}, batch size: {}.".format(ncpus, batch_size))
batchs = chunks(to_process, batch_size)
# Initialize workers
workers = [Process(target=freesurfer_worker, args=(batch,)) for batch in batchs]
print("Initialized {} workers for freesurfer processing.".format(len(workers)))
# Start workers
for worker in workers:
worker.start()
print("Started all workers.")
# Wait for workers to finish
for worker in tqdm(workers):
worker.join()
print("All workers done!")
def freesurfer_worker(batch):
'''
Freesurver run-all on all files on batch
'''
for vol in batch:
vol_name = os.path.basename(vol)
print("Transfering input to subjects folder...")
pre_log = open(path_join("logs", vol_name + "_preprocess_freesurfer_worker_log{}.txt".format(str(date.today()))), 'wb')
subprocess.run(["recon-all", "-i", vol, "-s", os.path.basename(vol)], stdout=pre_log)
pre_log.close()
print("Starting recon-all, this might take some hours.")
recon_log = open(path_join("logs", vol_name + "_freesurfer_worker_log{}.txt".format(str(date.today()))), 'wb')
subprocess.run(["recon-all", "-all", "-s", os.path.basename(vol)], stdout=recon_log)
recon_log.close()
def nii2niigz(folder):
'''
Converts nii files in folder to nii.gz
'''
for f in tqdm(glob.iglob(os.path.join(folder, "*.nii"))):
vol = nib.load(f)
nib.save(vol, f + ".gz")
def invert_matrix(hip_path, ref_path, saved_matrix):
'''
Inverts the FSL matrix and returns hip to original state
Returns path of final result
'''
if sys.platform == "win32":
try: # when running frozen with pyInstaller
flirt_executable = sys._MEIPASS+'\\flirt.exe'
convert_xfm_executable = sys._MEIPASS+'\\convert_xfm.exe'
except: # when running normally
flirt_executable = 'flirt.exe'
convert_xfm_executable = 'convert_xfm.exe'
else:
flirt_executable = 'flirt'
convert_xfm_executable = 'convert_xfm'
print("Inverting matrix... {}".format(hip_path))
my_env = os.environ.copy(); my_env["FSLOUTPUTTYPE"] = "NIFTI_GZ" # set FSLOUTPUTTYPE=NIFTI_GZ
subprocess.run([convert_xfm_executable, "-omat", INVERSE_MATRIX_PATH, "-inverse", saved_matrix], env=my_env)
print("Transforming back to original space...")
subprocess.run([flirt_executable, "-in", hip_path, "-ref", ref_path, "-out", "final_buffer.nii.gz", "-init", INVERSE_MATRIX_PATH,
"-applyxfm"], env=my_env)
save_path = os.path.normpath(ref_path + "_voxelcount-{}_e2dhipmask.nii.gz".format(int(nib.load("final_buffer.nii.gz").get_fdata().sum())))
try:
shutil.move("final_buffer.nii.gz", save_path)
os.remove(saved_matrix)
os.remove(INVERSE_MATRIX_PATH)
os.remove(hip_path)
except OSError as oe:
print("Error trying to remove post register matrix:")
traceback.print_exception(oe)
return
print("Post-Registrations done.")
return save_path
def adni_iso2mni(source_path=default_adni, save_path=mni_adni):
'''
Register all isometric ADNI volumes to MNI152
'''
print("Registering all adni volumes to mni152")
source_masks_path = os.path.join(source_path, "masks")
for s in tqdm(glob.glob(os.path.join(source_path, "samples", "*.nii.gz"))):
mask_name = os.path.basename(s).split(".nii.gz")[0]
mni152reg(s, os.path.join(source_masks_path, mask_name + ".nii.gz"),
save_path=os.path.join(save_path, "samples", mask_name),
mask_save_path=os.path.join(save_path, "masks", mask_name), remove=False, return_numpy=False)
def register_worker(q, save_path):
while True:
data = q.get()
if data is None:
return
else:
sample, mask, label, name = data
reg_sample, reg_mask = reg_handler(sample, mask=mask, uid=str(os.getpid()))
nib.save(nib.Nifti1Image(reg_sample, affine=None), path_join(save_path, "samples", HARP_CLASSES[label], str(name)))
nib.save(nib.Nifti1Image(reg_mask, affine=None), path_join(save_path, "masks", HARP_CLASSES[label], str(name)))
def harp2mni(source_path=default_harp, save_path=mni_harp):
'''
Register all HARP volumes to MNI152
'''
print("Registering HARP volumes to mni152")
harp = HARP("all", return_label=True, return_harp_id=True)
ncpu = cpu_count() - 1 # leave one thread for main process to fill the queue / general use
queue = Queue(maxsize=2) # less things hanging in queue = less memory usage
ps = []
# Initialize register workers
for i in range(ncpu):
p = Process(target=register_worker, args=(queue, save_path))
ps.append(p)
# Start workers
for p in ps:
p.start()
# Feed queue with all data to be registered
for i in tqdm(range(len(harp))):
sample, mask, label, harp_id = harp[i]
queue.put((sample, mask, label, "{}.nii.gz".format(harp_id)))
# Tell workers to stop
for i in range(ncpu):
queue.put(None)
# Wait for workers to finish
for p in ps:
p.join()
# Remove left over files
for cache in glob.iglob(path_join("cache", "*.nii.gz")):
try:
print("Deleting {}".format(cache))
os.remove(cache)
except FileNotFoundError:
print("File not found: {}".format(cache))
except Exception as e:
print("Error trying to cleanup cache {}".format(e))
def reg_handler(vol, mask=None, uid=''):
'''
Just calls the right registration processing function
'''
print("Registering input...")
if mask is None:
return reg_pre_post_single(vol, uid=uid)
else:
return reg_pre_post_pair(vol, mask, uid=uid)
def reg_pre_post_pair(vol, mask, uid=''):
'''
Pre and post processing of input volume and mask paths for mni152reg
'''
regworker = REGWorker(uid)
begin = time.time()
if type(vol) == np.ndarray and type(mask) == np.ndarray:
volpath = regworker.add_worker_id(PRE_REGISTER_VOL_PATH)
maskpath = regworker.add_worker_id(PRE_REGISTER_MASK_PATH)
nib.save(nib.Nifti1Image(vol, affine=None), volpath)
nib.save(nib.Nifti1Image(mask, affine=None), maskpath)
vol = volpath
mask = maskpath
elif not(type(vol) == str) and not(type(mask) == str):
raise ValueError("vol and mask should be a numpy volume or a path to the volume")
print("Input PATHS -> Vol: {}\nMask: {}".format(vol, mask))
vol, mask = mni152reg(vol, mask=mask, keep_matrix=True, worker_id=uid)
if vol.max() > 1.0 or vol.min() < 0 or mask.max() > 1.0 or mask.min() < 0:
print("WARNING: Data out of range, normalizing...")
vol = normalizeMri(vol.astype(np.float32)).squeeze()
mask = mask.astype(np.bool).astype(np.float32).squeeze()
print("Registration took {}s".format(time.time() - begin))
return vol, mask
def reg_pre_post_single(vol, uid=''):
'''
Pre and post processing of input volume for mni152reg
'''
regworker = REGWorker(uid)
begin = time.time()
# We want vol to be a path, but it can not be
if type(vol) == np.ndarray:
volpath = regworker.add_worker_id(PRE_REGISTER_VOL_PATH)
nib.save(nib.Nifti1Image(vol, affine=None), volpath)
vol = volpath
elif not(type(vol) == str):
raise ValueError("vol should be a numpy volume or a path to the volume")
print("Input PATH -> Vol: {}".format(vol))
vol = mni152reg(vol, mask=None, keep_matrix=True, worker_id=uid)
if vol.max() > 1.0 or vol.min() < 0:
print("Data out of range, normalizing...")
vol = normalizeMri(vol.astype(np.float32)).squeeze()
print("Registration took {}s".format(time.time() - begin))
return vol
def main(runlist, models, reg, batch_mode, results_dst):
'''
Main loop to run externally
'''
for arg in tqdm(runlist):
try:
print("Processing {}\n".format(arg))
if reg:
# Register
print("Performing MNI152 registration with FSL FLIRT due to -reg arg... This might take a few seconds...")
volpath = arg
arg = reg_handler(arg)
# Segment
vol, mask = run_once(None, models, numpy_input=arg, save=False, addch=True)
# Register back
nib.save(nib.Nifti1Image(mask, affine=None), TEMP_MASK_PATH)
mask_path = invert_matrix(TEMP_MASK_PATH, volpath, MNI_BUFFER_MATRIX_PATH)
else:
print("Not doing pre-registration, using orientation detector instead.")
vol, mask, mask_path = run_once(arg, models, save=True, return_mask_path=True, addch=True)
try:
check_file = os.path.join(results_dst, os.path.basename(mask_path))
print("Saving result to {}".format(check_file))
if os.path.isfile(check_file):
print("WARNING: Results for this volume already exist, overwriting...")
os.remove(check_file)
shutil.move(mask_path, results_dst)
except OSError as oe:
msg = "Error moving results: {}, do you have the right permissions?".format(oe)
print(msg)
error_dialog(msg)
quit()
if "-display" in argv:
print("Displaying results.")
viewnii(vol, mask=mask)
except Exception as e:
traceback.print_exc()
print("Error: {}, make sure your data is ok, and you have proper permissions. Please contact author in "
"https://github.com/dscarmo/e2dhipseg for issues".format(e))
if batch_mode:
print("Trying to continue... There might be errors in following segmentations.")
if __name__ == "__main__":
mask = None
try:
arg = argv[1]
folder = "/home/diedre/git/hippodeep"
if len(argv) >= 4:
mask = argv[3]
if arg != "hippodeep" and len(argv) >= 3:
folder = argv[2]
except IndexError:
arg = "run"
if arg == "harp2mni":
harp2mni()
elif arg == "hippodeep":
print("Due to author limitations, hippodeep must be run with terminal on the hippodeep folder, with the files on the same"
"folder")
hippodeep(folder)
elif arg == "freesurfer":
if "ncpu" in argv:
ncpu = int(argv[-1])
else:
ncpu = None
freesurfer(folder, ncpu=ncpu)
elif arg == "dcm2niix":
dcm2niix(folder)
elif arg == "nii2niigz":
nii2niigz(folder)
elif arg == "mni152reg":
print("Vol: {}\nMask: {}".format(folder, mask))
vol, mask = reg_handler(folder, mask)
viewnii(vol, mask, wait=0)
elif arg == "adni2mni":
adni_iso2mni()
elif arg == "generatestd":
generate_stds()
else:
batch_mode = False
runlist = []
if len(argv) == 1:
alert_dialog("Please give a nift volume to run on.")
arg = file_dialog()
if arg is None:
alert_dialog("No volume given, quitting.")
quit()
results_dst = os.path.join(os.path.dirname(arg), MASKS_FOLDER)
os.makedirs(results_dst, exist_ok=True)
print("Results will be in {}\n".format(os.path.join(arg, MASKS_FOLDER)))
reg = confirm_dialog("Do you want to register the volume to MNI152 space? (recommended, can take a few seconds)")
else:
if "-dir" in argv:
assert os.path.isdir(arg), "folder given in -d argument is not a folder!"
results_dst = os.path.join(arg, MASKS_FOLDER)
batch_mode = True
else:
results_dst = os.path.join(os.path.dirname(arg), MASKS_FOLDER)
assert os.path.isfile(arg), ("File not found. Make sure the path for your nii input volume {} is correct. If its"
"a directory use -dir".format(arg))
os.makedirs(results_dst, exist_ok=True)
print("Results will be in {}\n".format(os.path.join(arg, MASKS_FOLDER)))
reg = "-reg" in argv
print("Running pre-saved weights best model in {}".format(arg))
if sys.platform == "win32":
try: weights_path = sys._MEIPASS+'\\weights' # when running frozen with pyInstaller
except: weights_path = 'weights' # when running normally
else: weights_path = 'weights'
models = get_models(False, True, True, False, True, False, dim='2d', model_folder=weights_path, verbose=False,
out_channels=2, apply_sigmoid=False, apply_softmax=True)
if batch_mode:
runlist = glob.glob(os.path.join(arg, "*.nii")) + glob.glob(os.path.join(arg, "*.nii.gz"))
print("Running segmentation on the following files: {}\n".format(runlist))
main(runlist, models, reg, batch_mode, results_dst)
else:
runlist.append(arg)
main(runlist, models, reg, batch_mode, results_dst)