You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Traceback (most recent call last):
File "pretrain.py", line 307, in
main(i, modality=m)
File "pretrain.py", line 294, in main
train_results = train(modality, model, device, dataLoader['train'], optimizer, loss_fn, epoch, metrics)
File "pretrain.py", line 93, in train
output = model(inputs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data1/gzc/KuDA-main/models/Encoder_KIAdapter.py", line 227, in forward
uni_hidden = self.encoder(uni_fea, key_padding_mask)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data1/gzc/KuDA-main/models/Encoder_KIAdapter.py", line 138, in forward
tf_last_hidden_state, tf_hidden_state_list = self.tfencoder(inputs, src_key_padding_mask=key_padding_mask)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data1/gzc/KuDA-main/models/Encoder_KIAdapter.py", line 109, in forward
output, hidden_list = self.tfencoder(src, mask=None, src_key_padding_mask=src_key_padding_mask)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/transformer.py", line 266, in forward
output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/transformer.py", line 780, in forward
x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask, is_causal=is_causal))
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/transformer.py", line 788, in _sa_block
x = self.self_attn(x, x, x,
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/activation.py", line 1275, in forward
attn_output, attn_output_weights = F.multi_head_attention_forward(
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/functional.py", line 5499, in multi_head_attention_forward
assert key_padding_mask.shape == (bsz, src_len),
AssertionError: expecting key_padding_mask shape of (32, 231), but got torch.Size([32, 230])
Traceback (most recent call last):
File "pretrain.py", line 307, in
main(i, modality=m)
File "pretrain.py", line 294, in main
train_results = train(modality, model, device, dataLoader['train'], optimizer, loss_fn, epoch, metrics)
File "pretrain.py", line 93, in train
output = model(inputs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data1/gzc/KuDA-main/models/Encoder_KIAdapter.py", line 227, in forward
uni_hidden = self.encoder(uni_fea, key_padding_mask)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data1/gzc/KuDA-main/models/Encoder_KIAdapter.py", line 138, in forward
tf_last_hidden_state, tf_hidden_state_list = self.tfencoder(inputs, src_key_padding_mask=key_padding_mask)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data1/gzc/KuDA-main/models/Encoder_KIAdapter.py", line 109, in forward
output, hidden_list = self.tfencoder(src, mask=None, src_key_padding_mask=src_key_padding_mask)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/transformer.py", line 266, in forward
output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/transformer.py", line 780, in forward
x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask, is_causal=is_causal))
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/transformer.py", line 788, in _sa_block
x = self.self_attn(x, x, x,
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/modules/activation.py", line 1275, in forward
attn_output, attn_output_weights = F.multi_head_attention_forward(
File "/data1/ENVS/Msa/lib/python3.8/site-packages/torch/nn/functional.py", line 5499, in multi_head_attention_forward
assert key_padding_mask.shape == (bsz, src_len),
AssertionError: expecting key_padding_mask shape of (32, 231), but got torch.Size([32, 230])
作者你好,我在用mosi数据集运行pretrain部分出现如上报错,我已经按照readme中对于transformerencoder进行了修改,但还是出现上述报错,恳请解答!感谢作者开源,一篇很好的论文!
The text was updated successfully, but these errors were encountered: