forked from olewolf/DHT_nonblocking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdht_nonblocking.cpp
316 lines (264 loc) · 7.9 KB
/
dht_nonblocking.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/*
* DHT11, DHT21, and DHT22 non-blocking library.
* Based on Adafruit Industries' DHT driver library.
*
* (C) 2015 Ole Wolf <[email protected]>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "dht_nonblocking.h"
#define DHT_IDLE 0
#define DHT_BEGIN_MEASUREMENT 1
#define DHT_BEGIN_MEASUREMENT_2 2
#define DHT_DO_READING 3
#define DHT_COOLDOWN 4
/* Number of milliseconds before a new sensor read may be initiated. */
#define COOLDOWN_TIME 2000
/*
* Constructor for the sensor. It remembers the pin number and the
* type of sensor, and initializes internal variables.
*/
DHT_nonblocking::DHT_nonblocking( uint8_t pin, uint8_t type )
: _pin( pin ),
_type( type ),
_bit( digitalPinToBitMask( pin ) ),
_port( digitalPinToPort( pin ) ),
_maxcycles( microsecondsToClockCycles( 1000 ) )
{
dht_state = DHT_IDLE;
pinMode( _pin, INPUT );
digitalWrite( _pin, HIGH );
}
/*
* Instruct the DHT to begin sampling. Keep polling until it returns true.
* The tempearture is in degrees Celsius, and the humidity is in %.
*/
bool DHT_nonblocking::measure( float *temperature, float *humidity )
{
if( read_nonblocking( ) == true )
{
*temperature = read_temperature( );
*humidity = read_humidity( );
return( true );
}
else
{
return( false );
}
}
float DHT_nonblocking::read_temperature( ) const
{
int16_t value;
float to_return;
switch( _type )
{
case DHT_TYPE_11:
value = data[ 2 ];
to_return = (float) value;
break;
case DHT_TYPE_21:
case DHT_TYPE_22:
value = ( data[ 2 ] & 0x7f ) << 8;
value |= data[ 3 ];
if( ( data[ 2 ] & 0x80 ) != 0 )
{
value = -value;
}
to_return = ( (float) value ) / 10.0;
break;
default:
to_return = NAN;
break;
}
return( to_return );
}
float DHT_nonblocking::read_humidity( ) const
{
uint16_t value;
float to_return;
switch( _type )
{
case DHT_TYPE_11:
value = data[ 0 ];
to_return = (float) value;
break;
case DHT_TYPE_21:
case DHT_TYPE_22:
value = data[ 0 ] << 8;
value |= data[ 1 ];
to_return = (float)value / 10.0;
break;
default:
to_return = NAN;
break;
}
return( to_return );
}
/*
* Expect the input to be at the specified level and return the number
* of loop cycles spent there. This is identical to Adafruit's blocking
* driver.
*/
uint32_t DHT_nonblocking::expect_pulse(bool level) const
{
uint32_t count = 0;
// On AVR platforms use direct GPIO port access as it's much faster and better
// for catching pulses that are 10's of microseconds in length:
#ifdef __AVR
uint8_t portState = level ? _bit : 0;
while ((*portInputRegister(_port) & _bit) == portState) {
if (count++ >= _maxcycles) {
return 0; // Exceeded timeout, fail.
}
}
// Otherwise fall back to using digitalRead (this seems to be necessary on ESP8266
// right now, perhaps bugs in direct port access functions?).
#else
while (digitalRead(_pin) == level) {
if (count++ >= _maxcycles) {
return 0; // Exceeded timeout, fail.
}
}
#endif
return count;
}
/*
* State machine of the non-blocking read.
*/
bool DHT_nonblocking::read_nonblocking( )
{
bool status = false;
switch( dht_state )
{
/* We may begin measuring any time. */
case DHT_IDLE:
dht_state = DHT_BEGIN_MEASUREMENT;
break;
/* Initiate a sensor read. The read begins by going to high impedance
state for 250 ms. */
case DHT_BEGIN_MEASUREMENT:
digitalWrite( _pin, HIGH );
/* Reset 40 bits of received data to zero. */
data[ 0 ] = data[ 1 ] = data[ 2 ] = data[ 3 ] = data[ 4 ] = 0;
dht_timestamp = millis( );
dht_state = DHT_BEGIN_MEASUREMENT_2;
break;
/* After the high impedance state, pull the pin low for 20 ms. */
case DHT_BEGIN_MEASUREMENT_2:
/* Wait for 250 ms. */
if( millis( ) - dht_timestamp > 250 )
{
pinMode( _pin, OUTPUT );
digitalWrite( _pin, LOW );
dht_timestamp = millis( );
dht_state = DHT_DO_READING;
}
break;
case DHT_DO_READING:
/* Wait for 20 ms. */
if( millis( ) - dht_timestamp > 20 )
{
dht_timestamp = millis( );
dht_state = DHT_COOLDOWN;
status = read_data( );
// if( status != true )
// {
// Serial.println( "Reading failed" );
// }
}
break;
/* If it has been less than two seconds since the last time we read
the sensor, then let the sensor cool down.. */
case DHT_COOLDOWN:
if( millis( ) - dht_timestamp > COOLDOWN_TIME )
{
dht_state = DHT_IDLE;
}
break;
default:
break;
}
return( status );
}
/* Read sensor data. This is identical to Adafruit's blocking driver. */
bool DHT_nonblocking::read_data( )
{
uint32_t cycles[ 80 ];
/* Turn off interrupts temporarily because the next sections are timing critical
and we don't want any interruptions. */
{
volatile DHT_interrupt interrupt;
// End the start signal by setting data line high for 40 microseconds.
digitalWrite( _pin, HIGH );
delayMicroseconds( 40 );
// Now start reading the data line to get the value from the DHT sensor.
pinMode( _pin, INPUT );
// Delay a bit to let sensor pull data line low.
delayMicroseconds( 10 );
// First expect a low signal for ~80 microseconds followed by a high signal
// for ~80 microseconds again.
if( expect_pulse( LOW ) == 0 )
{
return( false );
}
if( expect_pulse( HIGH ) == 0 )
{
return( false );
}
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
// microsecond low pulse followed by a variable length high pulse. If the
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
// then it's a 1. We measure the cycle count of the initial 50us low pulse
// and use that to compare to the cycle count of the high pulse to determine
// if the bit is a 0 (high state cycle count < low state cycle count), or a
// 1 (high state cycle count > low state cycle count). Note that for speed all
// the pulses are read into a array and then examined in a later step.
for( int i = 0; i < 80; i += 2 )
{
cycles[ i ] = expect_pulse( LOW );
cycles[ i + 1 ] = expect_pulse( HIGH );
}
/* Timing critical code is now complete. */
}
// Inspect pulses and determine which ones are 0 (high state cycle count < low
// state cycle count), or 1 (high state cycle count > low state cycle count).
for( int i = 0; i < 40; ++i )
{
uint32_t low_cycles = cycles[ 2 * i ];
uint32_t high_cycles = cycles[ 2 * i + 1 ];
if( ( low_cycles == 0 ) || ( high_cycles == 0 ) )
{
return( false );
}
data[ i / 8 ] <<= 1;
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
if( high_cycles > low_cycles )
{
// High cycles are greater than 50us low cycle count, must be a 1.
data[ i / 8 ] |= 1;
}
// Else high cycles are less than (or equal to, a weird case) the 50us low
// cycle count so this must be a zero. Nothing needs to be changed in the
// stored data.
}
// Check we read 40 bits and that the checksum matches.
if( data[ 4 ] == ( ( data[ 0 ] + data[ 1 ] + data[ 2 ] + data[ 3 ]) & 0xFF ) )
{
return( true );
}
else
{
return( false );
}
}