This repository has been archived by the owner on Aug 14, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearn.go
64 lines (54 loc) · 1.57 KB
/
learn.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
package main
type LearnSettings struct {
numOfHiddenLayers int
numOfNodesInHiddenLayers int
numOfInputs int
datasets []*DataSet
names []string
}
type DataSet struct {
inputs []float64
name string
id int
}
func NewLearnSettings(numOfDatasets int, numOfInputs int, numOfHiddenLayers int, numOfNodesInHiddenLayers int) *LearnSettings {
l := &LearnSettings{
numOfHiddenLayers: numOfHiddenLayers,
numOfNodesInHiddenLayers: numOfNodesInHiddenLayers,
numOfInputs: numOfInputs,
datasets: make([]*DataSet, numOfDatasets),
}
for i := 0; i < numOfDatasets; i++ {
l.datasets[i] = &DataSet{
inputs: make([]float64, numOfInputs),
name: "undefined",
}
}
return l
}
func CreateNetFromLearnSettings(settings *LearnSettings, learparam float64) *NeuralNet {
for _, dataset := range settings.datasets {
isContained := false
for i, name := range settings.names {
if dataset.name == name {
isContained = true
dataset.id = i
break
}
}
if !isContained {
dataset.id = len(settings.names)
settings.names = append(settings.names, dataset.name)
}
}
return NewNet(settings.numOfNodesInHiddenLayers, settings.numOfHiddenLayers, settings.numOfInputs, len(settings.names), learparam)
}
func (net *NeuralNet) loadDataSet(dataset *DataSet) {
for i, input := range dataset.inputs {
net.input.Set(i+1, 0, input)
}
for i := 0; i < net.outputLayer.expected.row; i++ {
net.outputLayer.expected.Set(i, 0, 0)
}
net.outputLayer.expected.Set(dataset.id, 0, 1)
}