-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
393 lines (314 loc) · 18.3 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import torch
import torch.nn as nn
import torchvision.models as models
import torch.nn.functional as F
import numpy as np
import math
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet50(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size):
''' Initialize the layers of this model.'''
super().__init__()
# Keep track of hidden_size for initialization of hidden state
self.hidden_size = hidden_size
# Embedding layer that turns words into a vector of a specified size
self.word_embeddings = nn.Embedding(vocab_size, embed_size)
# The LSTM takes embedded word vectors (of a specified size) as input
# and outputs hidden states of size hidden_dim
self.lstm = nn.LSTM(input_size=embed_size, \
hidden_size=hidden_size, # LSTM hidden units
num_layers=1, # number of LSTM layer
bias=True, # use bias weights b_ih and b_hh
batch_first=True, # input & output will have batch size as 1st dimension
dropout=0, # Not applying dropout
bidirectional=False, # unidirectional LSTM
)
# The linear layer that maps the hidden state output dimension
# to the number of words we want as output, vocab_size
self.linear = nn.Linear(hidden_size, vocab_size)
# initialize the hidden state
# self.hidden = self.init_hidden()
def init_hidden(self, batch_size):
""" At the start of training, we need to initialize a hidden state;
there will be none because the hidden state is formed based on previously seen data.
So, this function defines a hidden state with all zeroes
The axes semantics are (num_layers, batch_size, hidden_dim)
"""
return (torch.zeros((1, batch_size, self.hidden_size), device=device), \
torch.zeros((1, batch_size, self.hidden_size), device=device))
def forward(self, features, captions):
""" Define the feedforward behavior of the model """
# Discard the <end> word to avoid predicting when <end> is the input of the RNN
captions = captions[:, :-1]
# Initialize the hidden state
self.batch_size = features.shape[0] # features is of shape (batch_size, embed_size)
self.hidden = self.init_hidden(self.batch_size)
# Create embedded word vectors for each word in the captions
embeddings = self.word_embeddings(
captions) # embeddings new shape : (batch_size, captions length - 1, embed_size)
# Stack the features and captions
embeddings = torch.cat((features.unsqueeze(1), embeddings),
dim=1) # embeddings new shape : (batch_size, caption length, embed_size)
# Get the output and hidden state by passing the lstm over our word embeddings
# the lstm takes in our embeddings and hidden state
lstm_out, self.hidden = self.lstm(embeddings,
self.hidden) # lstm_out shape : (batch_size, caption length, hidden_size)
# Fully connected layer
outputs = self.linear(lstm_out) # outputs shape : (batch_size, caption length, vocab_size)
return outputs
## Greedy search
def sample(self, inputs):
" accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) "
output = []
batch_size = inputs.shape[0] # batch_size is 1 at inference, inputs shape : (1, 1, embed_size)
hidden = self.init_hidden(batch_size) # Get initial hidden state of the LSTM
while True:
lstm_out, hidden = self.lstm(inputs, hidden) # lstm_out shape : (1, 1, hidden_size)
outputs = self.linear(lstm_out) # outputs shape : (1, 1, vocab_size)
outputs = outputs.squeeze(1) # outputs shape : (1, vocab_size)
_, max_indice = torch.max(outputs, dim=1) # predict the most likely next word, max_indice shape : (1)
output.append(max_indice.cpu().numpy()[0].item()) # storing the word predicted
if (max_indice == 1):
# We predicted the <end> word, so there is no further prediction to do
break
## Prepare to embed the last predicted word to be the new input of the lstm
inputs = self.word_embeddings(max_indice) # inputs shape : (1, embed_size)
inputs = inputs.unsqueeze(1) # inputs shape : (1, 1, embed_size)
return output
## Beam search implementation (Attempt)
def beam_search_sample(self, inputs, beam=3):
output = []
batch_size = inputs.shape[0] # batch_size is 1 at inference, inputs shape : (1, 1, embed_size)
hidden = self.init_hidden(batch_size) # Get initial hidden state of the LSTM
# sequences[0][0] : index of start word
# sequences[0][1] : probability of the word predicted
# sequences[0][2] : hidden state related of the last word
sequences = [[[torch.Tensor([0])], 1.0, hidden]]
max_len = 20
## Step 1
# Predict the first word <start>
outputs, hidden = DecoderRNN.get_outputs(self, inputs, hidden)
_, max_indice = torch.max(outputs, dim=1) # predict the most likely next word, max_indice shape : (1)
output.append(max_indice.cpu().numpy()[0].item()) # storing the word predicted
# inputs = DecoderRNN.get_next_word_input(self, max_indice)
l = 0
while len(sequences[0][0]) < max_len:
print("l:", l)
l += 1
temp = []
for seq in sequences:
# print("seq[0]: ", seq[0])
inputs = seq[0][-1] # last word index in seq
inputs = inputs.type(torch.cuda.LongTensor)
print("inputs : ", inputs)
# Embed the input word
inputs = self.word_embeddings(inputs) # inputs shape : (1, embed_size)
inputs = inputs.unsqueeze(1) # inputs shape : (1, 1, embed_size)
# retrieve the hidden state
hidden = seq[2]
preds, hidden = DecoderRNN.get_outputs(self, inputs, hidden)
# Getting the top <beam_index>(n) predictions
softmax_score = F.log_softmax(outputs, dim=1) # Define a function to sort the cumulative score
sorted_score, indices = torch.sort(-softmax_score, dim=1)
word_preds = indices[0][:beam]
best_scores = sorted_score[0][:beam]
# Creating a new list so as to put them via the model again
for i, w in enumerate(word_preds):
# print("seq[0]: ", seq[0][0][:].cpu().numpy().item())
next_cap, prob = seq[0][0].cpu().numpy().tolist(), seq[1]
next_cap.append(w)
print("next_cap : ", next_cap)
prob * best_scores[i].cpu().item()
temp.append([next_cap, prob])
sequences = temp
# Order according to proba
ordered = sorted(sequences, key=lambda tup: tup[1])
# Getting the top words
sequences = ordered[:beam]
print("sequences: ", sequences)
def get_outputs(self, inputs, hidden):
lstm_out, hidden = self.lstm(inputs, hidden) # lstm_out shape : (1, 1, hidden_size)
outputs = self.linear(lstm_out) # outputs shape : (1, 1, vocab_size)
outputs = outputs.squeeze(1) # outputs shape : (1, vocab_size)
return outputs, hidden
def get_next_word_input(self, max_indice):
## Prepare to embed the last predicted word to be the new input of the lstm
inputs = self.word_embeddings(max_indice) # inputs shape : (1, embed_size)
inputs = inputs.unsqueeze(1) # inputs shape : (1, 1, embed_size)
return inputs
class Attention(nn.Module):
"""
Attention Network.
"""
def __init__(self, encoder_dim, decoder_dim, attention_dim):
"""
:param encoder_dim: feature size of encoded images
:param decoder_dim: size of decoder's RNN
:param attention_dim: size of the attention network
"""
super(Attention, self).__init__()
self.encoder_att = nn.Linear(encoder_dim, attention_dim) # linear layer to transform encoded image
self.decoder_att = nn.Linear(decoder_dim, attention_dim) # linear layer to transform decoder's output
self.full_att = nn.Linear(attention_dim, 1) # linear layer to calculate values to be softmax-ed
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1) # softmax layer to calculate weights
def forward(self, encoder_out, decoder_hidden):
"""
Forward propagation.
:param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
:param decoder_hidden: previous decoder output, a tensor of dimension (batch_size, decoder_dim)
:return: attention weighted encoding, weights
"""
att1 = self.encoder_att(encoder_out.cuda().float()) # (batch_size, num_pixels, attention_dim)
att2 = self.decoder_att(decoder_hidden.float()) # (batch_size, attention_dim)
att = self.full_att(self.relu(att1 + att2.unsqueeze(1)).float()).squeeze(2) # (batch_size, num_pixels)
alpha = self.softmax(att) # (batch_size, num_pixels)
attention_weighted_encoding = (encoder_out * alpha.unsqueeze(2)).sum(dim=1) # (batch_size, encoder_dim)
return attention_weighted_encoding, alpha
class DecoderWithAttention(nn.Module):
"""
Decoder.
"""
def __init__(self, attention_dim, embed_dim, decoder_dim, vocab_size, encoder_dim=768, dropout=0.5):
"""
:param attention_dim: size of attention network
:param embed_dim: embedding size
:param decoder_dim: size of decoder's RNN
:param vocab_size: size of vocabulary
:param encoder_dim: feature size of encoded images
:param dropout: dropout
"""
super(DecoderWithAttention, self).__init__()
self.encoder_dim = encoder_dim
self.attention_dim = attention_dim
self.embed_dim = embed_dim
self.decoder_dim = decoder_dim
self.vocab_size = vocab_size
self.dropout = dropout
self.attention = Attention(encoder_dim, decoder_dim, attention_dim) # attention network
self.embedding = nn.Embedding(vocab_size, embed_dim) # embedding layer
self.dropout = nn.Dropout(p=self.dropout)
self.decode_step = nn.LSTMCell(embed_dim + encoder_dim, decoder_dim, bias=True) # decoding LSTMCell
self.init_h = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial hidden state of LSTMCell
self.init_c = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial cell state of LSTMCell
self.f_beta = nn.Linear(decoder_dim, encoder_dim) # linear layer to create a sigmoid-activated gate
self.sigmoid = nn.Sigmoid()
self.fc = nn.Linear(decoder_dim, vocab_size) # linear layer to find scores over vocabulary
self.init_weights() # initialize some layers with the uniform distribution
def init_weights(self):
"""
Initializes some parameters with values from the uniform distribution, for easier convergence.
"""
self.embedding.weight.data.uniform_(-0.1, 0.1)
self.fc.bias.data.fill_(0)
self.fc.weight.data.uniform_(-0.1, 0.1)
def init_hidden_state(self, encoder_out):
"""
Creates the initial hidden and cell states for the decoder's LSTM based on the encoded images.
:param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
:return: hidden state, cell state
"""
mean_encoder_out = encoder_out.mean(dim=1)
h = self.init_h(mean_encoder_out.float()) # (batch_size, decoder_dim)
c = self.init_c(mean_encoder_out.float())
return h, c
def forward(self, encoder_out, encoded_captions, caption_lengths):
"""
Forward propagation.
:param encoder_out: encoded images, a tensor of dimension (batch_size, enc_image_size, enc_image_size, encoder_dim)
:param encoded_captions: encoded captions, a tensor of dimension (batch_size, max_caption_length)
:param caption_lengths: caption lengths, a tensor of dimension (batch_size, 1)
:return: scores for vocabulary, sorted encoded captions, decode lengths, weights, sort indices
"""
batch_size = encoder_out.size(0)
encoder_dim = encoder_out.size(-1)
vocab_size = self.vocab_size
# Flatten image
encoder_out = encoder_out.view(batch_size, -1, encoder_dim) # (batch_size, num_pixels, encoder_dim)
num_pixels = encoder_out.size(1)
# Sort input data by decreasing lengths; why? apparent below
caption_lengths, sort_ind = caption_lengths.squeeze(1).sort(dim=0, descending=True)
encoder_out = encoder_out[sort_ind]
encoded_captions = encoded_captions[sort_ind]
# Embedding
embeddings = self.embedding(encoded_captions) # (batch_size, max_caption_length, embed_dim)
# Initialize LSTM state
h, c = self.init_hidden_state(encoder_out) # (batch_size, decoder_dim)
# We won't decode at the <end> position, since we've finished generating as soon as we generate <end>
# So, decoding lengths are actual lengths - 1
decode_lengths = (caption_lengths - 1).tolist()
# Create tensors to hold word predicion scores and alphas
predictions = torch.zeros(batch_size, max(decode_lengths), vocab_size).to(device)
alphas = torch.zeros(batch_size, max(decode_lengths), num_pixels).to(device)
# At each time-step, decode by
# attention-weighing the encoder's output based on the decoder's previous hidden state output
# then generate a new word in the decoder with the previous word and the attention weighted encoding
for t in range(max(decode_lengths)):
batch_size_t = sum([l > t for l in decode_lengths])
attention_weighted_encoding, alpha = self.attention(encoder_out[:batch_size_t],
h[:batch_size_t])
gate = self.sigmoid(self.f_beta(h[:batch_size_t])) # gating scalar, (batch_size_t, encoder_dim)
attention_weighted_encoding = gate * attention_weighted_encoding
h, c = self.decode_step(
torch.cat([embeddings[:batch_size_t, t, :], attention_weighted_encoding], dim=1),
(h[:batch_size_t], c[:batch_size_t])) # (batch_size_t, decoder_dim)
preds = self.fc(self.dropout(h)) # (batch_size_t, vocab_size)
predictions[:batch_size_t, t, :] = preds
alphas[:batch_size_t, t, :] = alpha
return predictions, encoded_captions, decode_lengths, alphas, sort_ind
def sample(self, encoder_out, caption_lengths):
"""
Forward propagation.
:param encoder_out: encoded images, a tensor of dimension (batch_size, enc_image_size, enc_image_size, encoder_dim)
:param encoded_captions: encoded captions, a tensor of dimension (batch_size, max_caption_length)
:param caption_lengths: caption lengths, a tensor of dimension (batch_size, 1)
:return: scores for vocabulary, sorted encoded captions, decode lengths, weights, sort indices
"""
batch_size = encoder_out.size(0)
encoder_dim = encoder_out.size(-1)
vocab_size = self.vocab_size
# Flatten image
encoder_out = encoder_out.view(batch_size, -1, encoder_dim) # (batch_size, num_pixels, encoder_dim)
num_pixels = encoder_out.size(1)
# Embedding
embedding = self.embedding(torch.zeros([1, 1], dtype=torch.long)).squeeze(0) # (batch_size, max_caption_length, embed_dim)
# Initialize LSTM state
h, c = self.init_hidden_state(encoder_out) # (batch_size, decoder_dim)
# We won't decode at the <end> position, since we've finished generating as soon as we generate <end>
# So, decoding lengths are actual lengths - 1
decode_lengths = (caption_lengths - 1).tolist()
# Create tensors to hold word predicion scores and alphas
predictions = torch.zeros(batch_size, max(decode_lengths), vocab_size).to(device)
alphas = torch.zeros(batch_size, max(decode_lengths), num_pixels).to(device)
# At each time-step, decode by
# attention-weighing the encoder's output based on the decoder's previous hidden state output
# then generate a new word in the decoder with the previous word and the attention weighted encoding
for t in range(max(decode_lengths)):
batch_size_t = sum([l > t for l in decode_lengths])
attention_weighted_encoding, alpha = self.attention(encoder_out[:batch_size_t],
h[:batch_size_t])
gate = self.sigmoid(self.f_beta(h[:batch_size_t])) # gating scalar, (batch_size_t, encoder_dim)
attention_weighted_encoding = gate * attention_weighted_encoding
h, c = self.decode_step(
torch.cat([embedding, attention_weighted_encoding], dim=1),
(h[:batch_size_t], c[:batch_size_t])) # (batch_size_t, decoder_dim)
preds = self.fc(self.dropout(h)) # (batch_size_t, vocab_size)
predictions[:batch_size_t, t, :] = preds
alphas[:batch_size_t, t, :] = alpha
_, max_indice = torch.max(preds, dim=1)
embedding = self.embedding(max_indice)
return predictions, decode_lengths