-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathevaluate.py
30 lines (24 loc) · 839 Bytes
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# 兼容python3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import inputs
import model as m
import tensorflow as tf
import globals as _g
_g.set_seed()
if __name__ == '__main__':
# prepare test dataset
test_dataset, test_steps = inputs.prepare_dataset(_g.TEST_LIST)
# get model
model = m.inference_multi_view()
# load_weights
model.load_weights('model/latest.weights.h5')
model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.001, decay=1e-5),
loss=tf.keras.losses.categorical_crossentropy,
metrics=[tf.keras.metrics.categorical_accuracy])
# predict
loss, accuracy = model.evaluate(test_dataset, steps=test_steps)
print('test loss:', loss)
print('test Accuracy:', accuracy)