-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdemo.py
125 lines (98 loc) · 4.7 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import argparse
from networks.transforms import trimap_transform, groupnorm_normalise_image
from networks.models import build_model
import numpy as np
import cv2
import torch
from dataloader import AlphaTestDataset
from interaction import robot_click, jaccard, remove_non_fg_connected
def NOCS(ious, thresh):
''' Number of clicks to reach threshold'''
nocs = []
for i in range(ious.shape[0]):
for j in range(20):
if(ious[i, j] >= thresh):
nocs.append(j + 1)
break
if(len(nocs) == i):
nocs.append(20)
return nocs
def np_to_torch(x):
return torch.from_numpy(x).permute(2, 0, 1)[None, :, :, :].float().cuda()
def scale_input(x: np.ndarray, scale_type) -> np.ndarray:
''' Scales so that min side length is 352 and sides are divisible by 8'''
h, w = x.shape[:2]
h1 = int(np.ceil(h / 32) * 32)
w1 = int(np.ceil(w / 32) * 32)
x_scale = cv2.resize(x, (w1, h1), interpolation=scale_type)
return x_scale
def pred(image_np: np.ndarray, trimap_np: np.ndarray, alpha_old_np: np.ndarray, model) -> np.ndarray:
''' Predict segmentation
Parameters:
image_np -- the image in rgb format between 0 and 1. Dimensions: (h, w, 3)
trimap_np -- two channel trimap/Click map, first background then foreground. Dimensions: (h, w, 2)
Returns:
alpha: alpha matte/non-binary segmentation image between 0 and 1. Dimensions: (h, w)
'''
# return trimap_np[:,:,1] + (1-np.sum(trimap_np,-1))/2
alpha_old_np = remove_non_fg_connected(alpha_old_np, trimap_np[:, :, 1])
h, w = trimap_np.shape[:2]
image_scale_np = scale_input(image_np, cv2.INTER_LANCZOS4)
trimap_scale_np = scale_input(trimap_np, cv2.INTER_NEAREST)
alpha_old_scale_np = scale_input(alpha_old_np, cv2.INTER_LANCZOS4)
with torch.no_grad():
image_torch = np_to_torch(image_scale_np)
trimap_torch = np_to_torch(trimap_scale_np)
alpha_old_torch = np_to_torch(alpha_old_scale_np[:, :, None])
trimap_transformed_torch = np_to_torch(trimap_transform(trimap_scale_np))
image_transformed_torch = groupnorm_normalise_image(image_torch.clone(), format='nchw')
alpha = model(image_transformed_torch, trimap_transformed_torch, alpha_old_torch, trimap_torch)
alpha = cv2.resize(alpha[0].cpu().numpy().transpose((1, 2, 0)), (w, h), cv2.INTER_LANCZOS4)
alpha[trimap_np[:, :, 0] == 1] = 0
alpha[trimap_np[:, :, 1] == 1] = 1
alpha = remove_non_fg_connected(alpha, trimap_np[:, :, 1])
return alpha
def test(model, args):
test_dset = AlphaTestDataset(args.dataset_dir)
ious = np.zeros((test_dset.__len__(), args.num_clicks))
for i in range(ious.shape[0]):
item_dict = test_dset.__getitem__(i)
image = item_dict['image']
gt = item_dict['alpha']
name = item_dict['name']
h, w = gt.shape
trimap = np.zeros((h, w, 2))
alpha = np.zeros((h, w))
for j in range(ious.shape[1]):
trimap, click_region, [y, x], click_cat = robot_click(alpha >= 0.5, gt, trimap)
alpha = pred(image, trimap, alpha, model)
ious[i, j] = jaccard(gt == 1, alpha >= 0.5, np.abs(gt - 0.5) < 0.25)
if(args.predictions_dir != ''):
cv2.imwrite(f'{args.predictions_dir}/{name}_{i}_{j+1}.png', alpha * 255)
nocs_90 = NOCS(ious, 0.9)
mIoU = np.mean(ious)
print(f'Average number of clicks to reach 90% {np.mean(nocs_90)} {nocs_90}')
print(f'Mean IoU {mIoU}')
if __name__ == '__main__':
def str2bool(v):
# https://stackoverflow.com/a/43357954
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser()
# Model related arguments
parser.add_argument('--use_mask_input', type=str2bool, nargs='?', const=True, default=True, help='')
parser.add_argument('--use_usr_encoder', type=str2bool, nargs='?', const=True, default=True, help='')
parser.add_argument('--weights', default='InterSegSynthFT.pth', help="pytorch state dict")
# Evaluation related arguments
parser.add_argument('--iou_lim', default=None, type=float, help='iou lim')
parser.add_argument('--dataset_dir', default='./GrabCut/', help='dataset to test on')
parser.add_argument('--predictions_dir', default='', help='Where to store predictions, if blank '' dont save ')
parser.add_argument('--num_clicks', default=20, type=int, help='Number of clicks per image')
args = parser.parse_args()
model = build_model(args)
model.eval()
test(model, args)