-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathmain.py
executable file
·59 lines (53 loc) · 3.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python
import argparse
import time
import os
from train_agent import train_agent
parser = argparse.ArgumentParser(description="Main script for running the model")
parser.add_argument('--scoring-function', action='store', dest='scoring_function',
choices=['activity_model', 'tanimoto', 'no_sulphur'],
default='tanimoto',
help='What type of scoring function to use.')
parser.add_argument('--scoring-function-kwargs', action='store', dest='scoring_function_kwargs',
nargs="*",
help='Additional arguments for the scoring function. Should be supplied with a '\
'list of "keyword_name argument". For pharmacophoric and tanimoto '\
'the keyword is "query_structure" and requires a SMILES. ' \
'For activity_model it is "clf_path " '\
'pointing to a sklearn classifier. '\
'For example: "--scoring-function-kwargs query_structure COc1ccccc1".')
parser.add_argument('--learning-rate', action='store', dest='learning_rate',
type=float, default=0.0005)
parser.add_argument('--num-steps', action='store', dest='n_steps', type=int,
default=3000)
parser.add_argument('--batch-size', action='store', dest='batch_size', type=int,
default=64)
parser.add_argument('--sigma', action='store', dest='sigma', type=int,
default=20)
parser.add_argument('--experience', action='store', dest='experience_replay', type=int,
default=0, help='Number of experience sequences to sample each step. '\
'0 means no experience replay.')
parser.add_argument('--num-processes', action='store', dest='num_processes',
type=int, default=0,
help='Number of processes used to run the scoring function. "0" means ' \
'that the scoring function will be run in the main process.')
parser.add_argument('--prior', action='store', dest='restore_prior_from',
default='data/Prior.ckpt',
help='Path to an RNN checkpoint file to use as a Prior')
parser.add_argument('--agent', action='store', dest='restore_agent_from',
default='data/Prior.ckpt',
help='Path to an RNN checkpoint file to use as a Agent.')
parser.add_argument('--save-dir', action='store', dest='save_dir',
help='Path where results and model are saved. Default is data/results/run_<datetime>.')
if __name__ == "__main__":
arg_dict = vars(parser.parse_args())
if arg_dict['scoring_function_kwargs']:
kwarg_list = arg_dict.pop('scoring_function_kwargs')
if not len(kwarg_list) % 2 == 0:
raise ValueError("Scoring function kwargs must be given as pairs, "\
"but got a list with odd length.")
kwarg_dict = {i:j for i, j in zip(kwarg_list[::2], kwarg_list[1::2])}
arg_dict['scoring_function_kwargs'] = kwarg_dict
else:
arg_dict['scoring_function_kwargs'] = dict()
train_agent(**arg_dict)