-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwgan_train.py
173 lines (148 loc) · 6.75 KB
/
wgan_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import random
import torch, torch.nn as nn
from torch.autograd import Variable
from torch import autograd
import time
import datetime
import os
from utils import prepare_train_batches, epoch_visualization
torch.manual_seed(42)
np.random.seed(42)
random.seed(42)
device_default = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def calc_gradient_penalty(D, real_data, fake_data, batch_size, Lambda = 0.1,
device = device_default):
#print(real_data.shape)
#print(fake_data.shape)
alpha = torch.rand(batch_size, 1)
alpha = alpha.expand(real_data.size()).to(device)
interpolates = alpha * real_data + (1 - alpha) * fake_data
interpolates = interpolates.to(device)
interpolates = autograd.Variable(interpolates,
requires_grad = True)
discriminator_interpolates = D(interpolates)
ones = torch.ones(discriminator_interpolates.size()).to(device)
gradients = autograd.grad(outputs = discriminator_interpolates,
inputs = interpolates,
grad_outputs = ones,
create_graph = True,
retain_graph = True,
only_inputs = True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1.0) ** 2).mean() * Lambda
return gradient_penalty
def train_wgan(X_train,
X_train_batches,
generator, g_optimizer,
discriminator, d_optimizer,
path_to_save,
batch_size = 256,
device = device_default,
use_gradient_penalty = True,
Lambda = 0.1,
num_epochs = 20000,
num_epoch_for_save = 100,
batch_size_sample = 5000,
proj_list = None):
k_g = 1
generator_loss_arr = []
generator_mean_loss_arr = []
discriminator_loss_arr = []
discriminator_mean_loss_arr = []
one = torch.tensor(1, dtype = torch.float).to(device)
mone = one * -1
mone = mone.to(device)
#path_to_save_models = os.path.join(path_to_save, 'models')
#path_to_save_plots = os.path.join(path_to_save, 'plots')
path_to_save_models = '.'
path_to_save_plots = '.'
try:
for epoch in range(num_epochs):
print(f"Start epoch = {epoch}")
if epoch < 25:
k_d = 100
else:
k_d = 10
for p in discriminator.parameters(): # reset requires_grad
p.requires_grad = True
start_time = time.time()
# Optimize D
# discriminator.train(True)
# generator.train(False)
for _ in range(k_d):
# Sample noise
# real_data = sample_data_batch(batch_size,
# X_train,
# device)
discriminator.zero_grad()
real_data = next(X_train_batches)
if (real_data.shape[0] != batch_size):
continue
real_data = torch.Tensor(real_data)
real_data = autograd.Variable(real_data).to(device)
d_real_data = discriminator(real_data).mean()
d_real_data.backward(mone)
noise = generator.make_hidden(batch_size)
#with torch.no_grad():
noise = autograd.Variable(noise).to(device)
#print(noise.size())
fake_data = generator(noise)
d_fake_data = discriminator(fake_data).mean()
d_fake_data.backward(one)
d_loss = d_fake_data - d_real_data
#print("OK")
if use_gradient_penalty:
gradient_penalty = calc_gradient_penalty(discriminator,
real_data.data,
fake_data.data,
batch_size,
Lambda)
gradient_penalty.backward()
d_loss += gradient_penalty
d_optimizer.step()
discriminator_loss_arr.append(d_loss.data.cpu().numpy())
#discriminator.train(False)
#generator.train(True)
# Optimize G
for p in discriminator.parameters(): # to avoid computation
p.requires_grad = False
for _ in range(k_g):
g_optimizer.zero_grad()
# Do an update
noise = generator.make_hidden(batch_size)
noise = autograd.Variable(noise).to(device)
fake_data = generator(noise)
generator_loss = discriminator(fake_data).mean()
generator_loss.backward(mone)
generator_loss = -generator_loss
g_optimizer.step()
generator_loss_arr.append(generator_loss.data.cpu().numpy())
end_time = time.time()
calc_time = end_time - start_time
discriminator_mean_loss_arr.append(np.mean(discriminator_loss_arr[-k_d :]))
generator_mean_loss_arr.append(np.mean(generator_loss_arr[-k_g :]))
print("Epoch {} of {} took {:.3f}s".format(
epoch + 1, num_epochs, calc_time))
print("Discriminator last mean loss: \t{:.6f}".format(
discriminator_mean_loss_arr[-1]))
print("Generator last mean loss: \t{:.6f}".format(
generator_mean_loss_arr[-1]))
if epoch % num_epoch_for_save == 0:
# Visualize
epoch_visualization(X_train, generator,
use_gradient_penalty,
discriminator_mean_loss_arr,
epoch, Lambda,
generator_mean_loss_arr,
path_to_save_plots,
batch_size_sample,
proj_list)
#cur_time = datetime.datetime.now().strftime('%Y_%m_%d-%H_%M_%S')
discriminator_model_name = 'discriminator.pth'
generator_model_name = 'generator.pth'
path_to_discriminator = discriminator_model_name
path_to_generator = generator_model_name
torch.save(discriminator.state_dict(), path_to_discriminator)
torch.save(generator.state_dict(), path_to_generator)
except KeyboardInterrupt:
pass