-
Notifications
You must be signed in to change notification settings - Fork 575
/
Copy pathee_sim_env.py
267 lines (228 loc) · 12.3 KB
/
ee_sim_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import numpy as np
import collections
import os
from constants import DT, XML_DIR, START_ARM_POSE
from constants import PUPPET_GRIPPER_POSITION_CLOSE
from constants import PUPPET_GRIPPER_POSITION_UNNORMALIZE_FN
from constants import PUPPET_GRIPPER_POSITION_NORMALIZE_FN
from constants import PUPPET_GRIPPER_VELOCITY_NORMALIZE_FN
from utils import sample_box_pose, sample_insertion_pose
from dm_control import mujoco
from dm_control.rl import control
from dm_control.suite import base
import IPython
e = IPython.embed
def make_ee_sim_env(task_name):
"""
Environment for simulated robot bi-manual manipulation, with end-effector control.
Action space: [left_arm_pose (7), # position and quaternion for end effector
left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
right_arm_pose (7), # position and quaternion for end effector
right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
left_gripper_position (1), # normalized gripper position (0: close, 1: open)
right_arm_qpos (6), # absolute joint position
right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
"qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
right_arm_qvel (6), # absolute joint velocity (rad)
right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
"images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
"""
if 'sim_transfer_cube' in task_name:
xml_path = os.path.join(XML_DIR, f'bimanual_viperx_ee_transfer_cube.xml')
physics = mujoco.Physics.from_xml_path(xml_path)
task = TransferCubeEETask(random=False)
env = control.Environment(physics, task, time_limit=20, control_timestep=DT,
n_sub_steps=None, flat_observation=False)
elif 'sim_insertion' in task_name:
xml_path = os.path.join(XML_DIR, f'bimanual_viperx_ee_insertion.xml')
physics = mujoco.Physics.from_xml_path(xml_path)
task = InsertionEETask(random=False)
env = control.Environment(physics, task, time_limit=20, control_timestep=DT,
n_sub_steps=None, flat_observation=False)
else:
raise NotImplementedError
return env
class BimanualViperXEETask(base.Task):
def __init__(self, random=None):
super().__init__(random=random)
def before_step(self, action, physics):
a_len = len(action) // 2
action_left = action[:a_len]
action_right = action[a_len:]
# set mocap position and quat
# left
np.copyto(physics.data.mocap_pos[0], action_left[:3])
np.copyto(physics.data.mocap_quat[0], action_left[3:7])
# right
np.copyto(physics.data.mocap_pos[1], action_right[:3])
np.copyto(physics.data.mocap_quat[1], action_right[3:7])
# set gripper
g_left_ctrl = PUPPET_GRIPPER_POSITION_UNNORMALIZE_FN(action_left[7])
g_right_ctrl = PUPPET_GRIPPER_POSITION_UNNORMALIZE_FN(action_right[7])
np.copyto(physics.data.ctrl, np.array([g_left_ctrl, -g_left_ctrl, g_right_ctrl, -g_right_ctrl]))
def initialize_robots(self, physics):
# reset joint position
physics.named.data.qpos[:16] = START_ARM_POSE
# reset mocap to align with end effector
# to obtain these numbers:
# (1) make an ee_sim env and reset to the same start_pose
# (2) get env._physics.named.data.xpos['vx300s_left/gripper_link']
# get env._physics.named.data.xquat['vx300s_left/gripper_link']
# repeat the same for right side
np.copyto(physics.data.mocap_pos[0], [-0.31718881+0.1, 0.5, 0.29525084])
np.copyto(physics.data.mocap_quat[0], [1, 0, 0, 0])
# right
np.copyto(physics.data.mocap_pos[1], np.array([0.31718881-0.1, 0.49999888, 0.29525084]))
np.copyto(physics.data.mocap_quat[1], [1, 0, 0, 0])
# reset gripper control
close_gripper_control = np.array([
PUPPET_GRIPPER_POSITION_CLOSE,
-PUPPET_GRIPPER_POSITION_CLOSE,
PUPPET_GRIPPER_POSITION_CLOSE,
-PUPPET_GRIPPER_POSITION_CLOSE,
])
np.copyto(physics.data.ctrl, close_gripper_control)
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
super().initialize_episode(physics)
@staticmethod
def get_qpos(physics):
qpos_raw = physics.data.qpos.copy()
left_qpos_raw = qpos_raw[:8]
right_qpos_raw = qpos_raw[8:16]
left_arm_qpos = left_qpos_raw[:6]
right_arm_qpos = right_qpos_raw[:6]
left_gripper_qpos = [PUPPET_GRIPPER_POSITION_NORMALIZE_FN(left_qpos_raw[6])]
right_gripper_qpos = [PUPPET_GRIPPER_POSITION_NORMALIZE_FN(right_qpos_raw[6])]
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
@staticmethod
def get_qvel(physics):
qvel_raw = physics.data.qvel.copy()
left_qvel_raw = qvel_raw[:8]
right_qvel_raw = qvel_raw[8:16]
left_arm_qvel = left_qvel_raw[:6]
right_arm_qvel = right_qvel_raw[:6]
left_gripper_qvel = [PUPPET_GRIPPER_VELOCITY_NORMALIZE_FN(left_qvel_raw[6])]
right_gripper_qvel = [PUPPET_GRIPPER_VELOCITY_NORMALIZE_FN(right_qvel_raw[6])]
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
@staticmethod
def get_env_state(physics):
raise NotImplementedError
def get_observation(self, physics):
# note: it is important to do .copy()
obs = collections.OrderedDict()
obs['qpos'] = self.get_qpos(physics)
obs['qvel'] = self.get_qvel(physics)
obs['env_state'] = self.get_env_state(physics)
obs['images'] = dict()
obs['images']['top'] = physics.render(height=480, width=640, camera_id='top')
# obs['images']['angle'] = physics.render(height=480, width=640, camera_id='angle')
# obs['images']['vis'] = physics.render(height=480, width=640, camera_id='front_close')
# used in scripted policy to obtain starting pose
obs['mocap_pose_left'] = np.concatenate([physics.data.mocap_pos[0], physics.data.mocap_quat[0]]).copy()
obs['mocap_pose_right'] = np.concatenate([physics.data.mocap_pos[1], physics.data.mocap_quat[1]]).copy()
# used when replaying joint trajectory
obs['gripper_ctrl'] = physics.data.ctrl.copy()
return obs
def get_reward(self, physics):
raise NotImplementedError
class TransferCubeEETask(BimanualViperXEETask):
def __init__(self, random=None):
super().__init__(random=random)
self.max_reward = 4
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
self.initialize_robots(physics)
# randomize box position
cube_pose = sample_box_pose()
box_start_idx = physics.model.name2id('red_box_joint', 'joint')
np.copyto(physics.data.qpos[box_start_idx : box_start_idx + 7], cube_pose)
# print(f"randomized cube position to {cube_position}")
super().initialize_episode(physics)
@staticmethod
def get_env_state(physics):
env_state = physics.data.qpos.copy()[16:]
return env_state
def get_reward(self, physics):
# return whether left gripper is holding the box
all_contact_pairs = []
for i_contact in range(physics.data.ncon):
id_geom_1 = physics.data.contact[i_contact].geom1
id_geom_2 = physics.data.contact[i_contact].geom2
name_geom_1 = physics.model.id2name(id_geom_1, 'geom')
name_geom_2 = physics.model.id2name(id_geom_2, 'geom')
contact_pair = (name_geom_1, name_geom_2)
all_contact_pairs.append(contact_pair)
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
touch_table = ("red_box", "table") in all_contact_pairs
reward = 0
if touch_right_gripper:
reward = 1
if touch_right_gripper and not touch_table: # lifted
reward = 2
if touch_left_gripper: # attempted transfer
reward = 3
if touch_left_gripper and not touch_table: # successful transfer
reward = 4
return reward
class InsertionEETask(BimanualViperXEETask):
def __init__(self, random=None):
super().__init__(random=random)
self.max_reward = 4
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
self.initialize_robots(physics)
# randomize peg and socket position
peg_pose, socket_pose = sample_insertion_pose()
id2index = lambda j_id: 16 + (j_id - 16) * 7 # first 16 is robot qpos, 7 is pose dim # hacky
peg_start_id = physics.model.name2id('red_peg_joint', 'joint')
peg_start_idx = id2index(peg_start_id)
np.copyto(physics.data.qpos[peg_start_idx : peg_start_idx + 7], peg_pose)
# print(f"randomized cube position to {cube_position}")
socket_start_id = physics.model.name2id('blue_socket_joint', 'joint')
socket_start_idx = id2index(socket_start_id)
np.copyto(physics.data.qpos[socket_start_idx : socket_start_idx + 7], socket_pose)
# print(f"randomized cube position to {cube_position}")
super().initialize_episode(physics)
@staticmethod
def get_env_state(physics):
env_state = physics.data.qpos.copy()[16:]
return env_state
def get_reward(self, physics):
# return whether peg touches the pin
all_contact_pairs = []
for i_contact in range(physics.data.ncon):
id_geom_1 = physics.data.contact[i_contact].geom1
id_geom_2 = physics.data.contact[i_contact].geom2
name_geom_1 = physics.model.id2name(id_geom_1, 'geom')
name_geom_2 = physics.model.id2name(id_geom_2, 'geom')
contact_pair = (name_geom_1, name_geom_2)
all_contact_pairs.append(contact_pair)
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
touch_left_gripper = ("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs or \
("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs or \
("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs or \
("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
peg_touch_table = ("red_peg", "table") in all_contact_pairs
socket_touch_table = ("socket-1", "table") in all_contact_pairs or \
("socket-2", "table") in all_contact_pairs or \
("socket-3", "table") in all_contact_pairs or \
("socket-4", "table") in all_contact_pairs
peg_touch_socket = ("red_peg", "socket-1") in all_contact_pairs or \
("red_peg", "socket-2") in all_contact_pairs or \
("red_peg", "socket-3") in all_contact_pairs or \
("red_peg", "socket-4") in all_contact_pairs
pin_touched = ("red_peg", "pin") in all_contact_pairs
reward = 0
if touch_left_gripper and touch_right_gripper: # touch both
reward = 1
if touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table): # grasp both
reward = 2
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
reward = 3
if pin_touched: # successful insertion
reward = 4
return reward