-
Notifications
You must be signed in to change notification settings - Fork 575
/
Copy pathvinn_eval.py
336 lines (285 loc) · 13.1 KB
/
vinn_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import h5py
import pathlib
import os
import argparse
import matplotlib.pyplot as plt
from PIL import Image
import torchvision
from torchvision import transforms
# from visualize_episodes import visualize_joints
from utils import set_seed, sample_box_pose
# from imitate_episodes import get_image
from sim_env import BOX_POSE
from constants import DT
from imitate_episodes import save_videos
from einops import rearrange
import time
DT = 0.02
import IPython
e = IPython.embed
# modified from https://github.com/jyopari/VINN/blob/main/nearest-neighbor-eval/handle_nn.ipynb
def calculate_nearest_neighbors(curr_feature, support_inputs, support_targets, k, state_weight):
has_skip = len(support_targets.shape) == 3
if has_skip: # when there is action skip
num_targets, skip, a_dim = support_targets.shape
support_targets = support_targets.view((num_targets, -1))
curr_vis_feature, curr_s_feature = curr_feature
support_vis_feature, support_s_feature = support_inputs
pairwise_dist_vis = torch.norm(curr_vis_feature - support_vis_feature, dim=1).unsqueeze(0)
pairwise_dist_s = torch.norm(curr_s_feature - support_s_feature, dim=1).unsqueeze(0)
pairwise_dist = pairwise_dist_vis + pairwise_dist_s * state_weight
sorted_dist, index = torch.sort(pairwise_dist, dim=1) # sort the support axis
permuted_support_targets = support_targets[index]
topk_dist = pairwise_dist[:, :k]
topk_support_targets = permuted_support_targets[:, :k]
weights = F.softmax(-topk_dist, dim=1)
weighted_support_targets = weights.unsqueeze(2) * topk_support_targets
prediction = torch.sum(weighted_support_targets, dim=1)
if has_skip:
num_predictions = prediction.shape[0]
prediction = prediction.reshape((num_predictions, skip, a_dim))
return prediction
def main(args):
# TODO ######################
k = None # for scripted box transfer
skip = 100
real_robot = True
save_episode = True
# TODO ######################
onscreen_cam = 'main'
state_dim = 14
dataset_dir = args['dataset_dir']
onscreen_render = args['onscreen_render']
ckpt_dir = args['ckpt_dir']
model_dir = args['model_dir']
task_name = args['task_name']
if 'insertion' in task_name:
sim_episode_len = 400
env_max_reward = 4
ks = [None]
elif 'transfer_cube' in task_name:
sim_episode_len = 400
env_max_reward = 4
ks = [1, 1, 1]
if 'human' in dataset_dir:
state_weight = 5
else:
state_weight = 10
print(f'{state_weight=}')
elif task_name == 'ziploc_slide':
env_max_reward = 1
ks = [71]
state_weight = 0
elif task_name == 'aloha_mobile_wipe_wine':
sim_episode_len = 1300
env_max_reward = 4
ks = [2, 2, 2]
state_weight = 5
print(f'{state_weight=}')
else:
raise NotImplementedError
model_name = pathlib.PurePath(model_dir).name
seed = int(model_name.split('-')[-1][:-3])
repr_type = 'byol'
if 'cotrain' in model_name:
repr_type += '_cotrain'
e() # make sure!
k = ks[seed]
if real_robot:
BASE_DELAY = 15
query_freq = skip - BASE_DELAY
# load train data
vis_features = []
state_features = []
Y = []
for episode_id in range(0, 40):
dataset_path = os.path.join(dataset_dir, f'episode_{episode_id}.hdf5')
with h5py.File(dataset_path, 'r') as root:
action = root['/action'][:]
base_action = root['/base_action'][:]
action = np.concatenate([action, base_action], axis=1)
camera_names = list(root[f'/observations/images/'].keys())
# Visual feature
all_cam_feature = []
for cam_name in camera_names:
feature_dataset_path = os.path.join(dataset_dir, f'{repr_type}_features_seed{seed}_episode_{episode_id}.hdf5')
with h5py.File(feature_dataset_path, 'r') as root:
cam_feature = root[f'/features/{cam_name}'][:]
all_cam_feature.append(cam_feature)
vis_fea = np.concatenate(all_cam_feature, axis=1)
## State feature
dataset_path = os.path.join(dataset_dir, f'episode_{episode_id}.hdf5')
with h5py.File(dataset_path, 'r') as root:
s_fea = root['/observations/qpos'][:]
# stack actions together
eps_len = len(action)
indices = np.tile(np.arange(skip), eps_len).reshape(eps_len, skip) # each row is 0, 1, ... skip
offset = np.expand_dims(np.arange(eps_len), axis=1)
indices = indices + offset # row1: 0, 1, ... skip; row2: 1, 2, ... skip+1
# indices will exceed eps_len, thus clamp to eps_len-1
indices = np.clip(indices, 0, eps_len-1)
# stack action
action = action[indices] # new shape: eps_len, skip, a_dim
vis_features.append(vis_fea)
state_features.append(s_fea)
Y.append(action)
vis_features = np.concatenate(vis_features)
state_features = np.concatenate(state_features)
Y = np.concatenate(Y)
train_inputs = [torch.from_numpy(vis_features).cuda(), torch.from_numpy(state_features).cuda()]
train_targets = torch.from_numpy(Y).cuda()
set_seed(1000)
feature_extractors = {}
for cam_name in camera_names:
resnet = torchvision.models.resnet18(pretrained=True)
loading_status = resnet.load_state_dict(torch.load(model_dir.replace('DUMMY', cam_name)))
print(cam_name, loading_status)
resnet = nn.Sequential(*list(resnet.children())[:-1])
resnet = resnet.cuda()
resnet.eval()
feature_extractors[cam_name] = resnet
# load environment
if real_robot:
from aloha_scripts.real_env import make_real_env #### TODO TODO
env = make_real_env(init_node=True, setup_robots=True, setup_base=True)
max_timesteps = sim_episode_len
camera_names = ['cam_high', 'cam_left_wrist', 'cam_right_wrist']
else:
from sim_env import make_sim_env
env = make_sim_env(task_name)
max_timesteps = sim_episode_len
num_rollouts = 50
episode_returns = []
max_rewards = []
for rollout_id in range(num_rollouts):
### set task
BOX_POSE[0] = sample_box_pose() # used in sim reset
ts = env.reset()
### evaluation loop
qpos_history = torch.zeros((1, max_timesteps, state_dim)).cuda()
image_list = [] # for visualization
qpos_list = []
target_qpos_list = []
rewards = []
with torch.inference_mode():
for t in range(sim_episode_len):
start_time = time.time()
if t % 100 == 0: print(t)
if t % query_freq == 0:
### process previous timestep to get qpos and image_list
obs = ts.observation
if 'images' in obs:
image_list.append(obs['images'])
else:
image_list.append({'main': obs['image']})
qpos_numpy = np.array(obs['qpos'])
# qpos = pre_process(qpos_numpy)
qpos = torch.from_numpy(qpos_numpy).float().cuda().unsqueeze(0)
qpos_history[:, t] = qpos
_, curr_image_raw = get_image(ts, camera_names)
image_size = 120
transform = transforms.Compose([
transforms.Resize(image_size), # will scale the image
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Lambda(expand_greyscale),
transforms.Normalize(
mean=torch.tensor([0.485, 0.456, 0.406]),
std=torch.tensor([0.229, 0.224, 0.225])),
])
all_cam_features = []
for cam_id, curr_image in enumerate(curr_image_raw):
curr_image = Image.fromarray(curr_image) # TODO only one camera
curr_image = transform(curr_image)
curr_image = curr_image.unsqueeze(dim=0).cuda()
curr_image_feature = feature_extractors[camera_names[cam_id]](curr_image)
curr_image_feature = curr_image_feature.squeeze(3).squeeze(2)
all_cam_features.append(curr_image_feature)
curr_image_feature = torch.cat(all_cam_features, dim=1)
### Visual feature
# curr_feature = curr_image_feature
### State feature
# curr_feature = qpos
### Both features
curr_feature = [curr_image_feature, qpos]
action = calculate_nearest_neighbors(curr_feature, train_inputs, train_targets, k, state_weight) # TODO use this
action = action.squeeze(0).cpu().numpy()
action = np.concatenate([action[:-BASE_DELAY, :-2], action[BASE_DELAY:, -2:]], axis=1)
print(f'Query: {(time.time() - start_time):.3f}s')
curr_action = action[t % query_freq]
target_qpos = curr_action[:-2]
base_action = curr_action[-2:]
# ### SAFETY
# max_a = 0.05
# curr_qpos = qpos.squeeze().cpu().numpy()
# target_qpos = target_qpos.clip(curr_qpos - max_a, curr_qpos + max_a)
# ### SAFETY
### step the environment
ts = env.step(target_qpos, base_action=base_action)
duration = time.time() - start_time
# print(f'{duration:.3f}')
time.sleep(max(0, DT - duration))
### save things for visualization
qpos_list.append(qpos_numpy)
target_qpos_list.append(target_qpos)
rewards.append(ts.reward)
# if real_robot and t != 0 and t % 60 == 0:
# e()
plt.close()
if real_robot:
env.puppet_bot_left.dxl.robot_set_operating_modes("single", "gripper", "position")
env.puppet_bot_right.dxl.robot_set_operating_modes("single", "gripper", "position")
env.puppet_bot_left.dxl.robot_set_operating_modes("single", "gripper", "pwm")
env.puppet_bot_right.dxl.robot_set_operating_modes("single", "gripper", "pwm")
rewards = np.array(rewards)
episode_return = np.sum(rewards[rewards!=None])
episode_returns.append(episode_return)
max_reward = np.max(rewards)
max_rewards.append(max_reward)
print(f'{episode_return=}, {max_reward=}')
if save_episode:
save_videos(image_list, DT, video_path=os.path.join(ckpt_dir, f'video{rollout_id}.mp4'))
# visualize_joints(qpos_list, target_qpos_list, plot_path=os.path.join(ckpt_dir, f'qpos{rollout_id}.png'))
# visualize_joints(qpos_list, example_qpos, plot_path=os.path.join(ckpt_dir, f'qpos_reference{rollout_id}.png'), label_overwrite=("policy", "dataset"))
success_rate = np.mean(np.array(max_rewards) == env_max_reward)
avg_return = np.mean(episode_returns)
summary_str = f'\nSuccess rate: {success_rate}\nAverage return: {avg_return}\n\n'
for r in range(env_max_reward+1):
more_or_equal_r = (np.array(max_rewards) >= r).sum()
more_or_equal_r_rate = more_or_equal_r / num_rollouts
summary_str += f'Reward >= {r}: {more_or_equal_r}/{num_rollouts} = {more_or_equal_r_rate*100}%\n'
print(summary_str)
# save success rate to txt
result_file_name = f'result_{skip}_{k}' + '.txt'
with open(os.path.join(ckpt_dir, result_file_name), 'w') as f:
f.write(summary_str)
f.write(repr(episode_returns))
f.write('\n\n')
f.write(repr(max_rewards))
return success_rate, avg_return
def get_image(ts, camera_names):
if 'images' in ts.observation:
curr_images = []
for cam_name in camera_names:
curr_image = rearrange(ts.observation['images'][cam_name], 'h w c -> c h w')
curr_images.append(curr_image)
curr_image_raw = np.stack(curr_images, axis=0)
else:
curr_image_raw = rearrange(ts.observation['image'], 'h w c -> c h w')
curr_image = torch.from_numpy(curr_image_raw / 255.0).float().cuda().unsqueeze(0)
curr_image_raw = rearrange(curr_image_raw, 'b c h w -> b h w c')
return curr_image, curr_image_raw
def expand_greyscale(t):
return t.expand(3, -1, -1)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--onscreen_render', action='store_true')
parser.add_argument('--dataset_dir', action='store', type=str, help='The text to parse.', required=True)
parser.add_argument('--model_dir', action='store', type=str, help='model_dir', required=True)
parser.add_argument('--task_name', action='store', type=str, help='task_name', required=True)
parser.add_argument('--ckpt_dir', action='store', type=str, help='The text to parse.', required=True)
main(vars(parser.parse_args()))