forked from RSE-Sheffield/collaborative_github_exercise
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_trait_evolution.Rmd
executable file
·61 lines (40 loc) · 1.39 KB
/
plot_trait_evolution.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
title: "Trait evolution across species"
output:
html_document:
theme: paper
---
### setup
First we load the required packages and create some objects to compile data on trait evolution for each species.
```{r warning=F, message=FALSE}
require(dplyr)
require(tidyr)
require(ggplot2)
require(plotly)
require(webshot)
t <- 0:100 # generate time vector
dt <- NULL # generate object to compile time-series data
cols <- NULL # generate object to compile trendline colours
```
***
### Simulate trait evolution, iterate over all species files in `params/` folder
We'll use the parameters supplied in your scripts to generate brownian trait evolution trendline for each species.
```{r}
spp.files <- dir("params/")[dir("params/") != "params_tmpl.R"]
for(spp in spp.files){
# source parameters for each species
source(paste("params", spp, sep= "/"))
# generate trait evolution time-series and compile plotting data
dt <- rbind(dt, data.frame(t,
trait = c(0, rnorm(n = length(t) - 1, sd = sqrt(sig2)) %>% cumsum()),
species = species.name))
cols <- c(cols, color)
}
```
### Plot trait evolution timeseries
Use the data generated to plot all species.
```{r fig.width = 9}
p <- ggplot(data=dt, aes(x=t, y=trait, group = species, colour = species)) +
geom_line() + scale_colour_manual(values=cols)
ggplotly(p)
```