-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
131 lines (112 loc) · 6.32 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
__author__ = 'marvinler'
import os
import random
import torch.utils.data.dataset
from PIL import Image
from torch.utils.data.dataset import T_co
from torchvision import transforms
def pil_loader(path):
# Open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
class Dataset(torch.utils.data.dataset.Dataset):
"""
Pre-fetch all tiles files from all slides, as well as slides labels.
Expects a tile folder as described in doc of self.load_tile_paths.
Also expects a CSV ground-truth file as described in self.load_labels.
"""
def __init__(self, slides_parent_folder, slides_label_filepath, n_sampled_tiles_per_slide,
tile_augmentation=None):
"""
Loads tiles paths, loads slide labels, instantiates data augmentation.
:param slides_parent_folder: parent folder containing 1 folder per WSI (each WSI folder containing tiles as
images)
:param slides_label_filepath: CSV filepath containing the labels of slides
:param n_sampled_tiles_per_slide: number of tiles to be sampled per sampled WSI
:param tile_augmentation: None or a torchvision data augmentation transforms
"""
self.slides_parent_folder = slides_parent_folder
assert os.path.exists(slides_parent_folder)
self.slides_label_filepath = slides_label_filepath
assert os.path.exists(slides_label_filepath)
self.n_sampled_tiles_per_slide = n_sampled_tiles_per_slide
self.tile_augmentation = tile_augmentation if tile_augmentation else transforms.Compose([
transforms.ToTensor()
])
self.tiles_files, self.tiles_locations, self.slides_ids = self.load_tile_paths()
self.slide_labels, self.correspondence_digit_label_name = self.load_labels()
self.n_classes = len(self.correspondence_digit_label_name)
# Check that every slide folder has a corresponding label
assert all([slide_id in self.slide_labels.keys() for slide_id in self.slides_ids])
def load_tile_paths(self) -> (list, list):
"""
Seeks and store all tiles paths. Expects folder hierarchy e.g.:
parent_folder
| slide_folder_1
| | tile1
| | tile2
| slide_folder_2
| | tile1
| | tile2
Each tile should be named with their coordinates, e.g. 16_23.png for tile row 16 column 23 within the WSI.
:return: (list of lists: each inner list contains all images from each (slide) folder in self.parent_folder,
associated tiles coordinates in a list of 2-elements lists e.g. [[16, 23], [2, 39]],
the list of slides ids i.e. the name of the slides folders)
"""
parent_folder = self.slides_parent_folder
slide_folders = list(map(lambda f: os.path.join(parent_folder, f), os.listdir(parent_folder)))
slide_folders = list(filter(lambda f: not os.path.isfile(f), slide_folders))
slide_folders_ids = list(map(os.path.basename, slide_folders))
# Get absolute tiles files
tiles_paths = list(map(lambda slide_folder:
list(map(lambda tile: os.path.join(slide_folder, tile),
list(filter(lambda f: f.endswith(('.png', '.jpg', '.jpeg', '.bmp')),
os.listdir(slide_folder))))),
slide_folders))
# Recover tiles coordinates
tiles_locations = list(map(lambda tiles_files_per_slide:
list(map(lambda tile_path:
list(map(int, os.path.basename(tile_path).split('.')[0].split('_'))),
tiles_files_per_slide)),
tiles_paths))
assert len(slide_folders_ids) == len(tiles_locations) == len(tiles_paths)
return tiles_paths, tiles_locations, slide_folders_ids
def load_labels(self):
"""
Loads labels from a CSV file, then converts all labels to digits.
Expects two columns: the first with slide folders names of each slide, the second with an associated label
(any type of label).
:return: (a dictionary of length the number of CSV entries with keys: slides ids and values: its corresponding
digit, a dictionary of correspondence between digit and original label name)
"""
csv_filepath = self.slides_label_filepath
with open(csv_filepath, 'r') as f:
content = f.read().splitlines()
cells = [line.split(',') for line in content]
slides_ids = list(map(lambda cell: cell[0], cells))
slides_labels = list(map(lambda cell: cell[1], cells))
# Converts labels to digits
unique_labels = list(set(slides_labels))
assert len(unique_labels) > 1, f'Expected at least two labels, found {len(unique_labels)}'
label_to_digit = {label: digit for digit, label in enumerate(unique_labels)}
digit_to_label = {digit: label for digit, label in enumerate(unique_labels)}
slides_labels = {slide_id: label_to_digit[label] for slide_id, label in zip(slides_ids, slides_labels)}
return slides_labels, digit_to_label
def __getitem__(self, slide_index) -> T_co:
slide_tiles_paths = self.tiles_files[slide_index]
slide_tiles_locations = self.tiles_locations[slide_index]
# Randomly samples tiles among all tiles of slide
n_tiles = len(slide_tiles_paths)
sampled_tiles_indexes = random.choices(range(n_tiles), k=self.n_sampled_tiles_per_slide)
# Loads all tiles and their locations
tiles = list(map(pil_loader, [slide_tiles_paths[i] for i in sampled_tiles_indexes]))
tiles = torch.stack(list(map(self.tile_augmentation, tiles)))
tiles_locations = torch.tensor([slide_tiles_locations[i] for i in sampled_tiles_indexes])
# Load associated slide label
slide_id = self.slides_ids[slide_index]
slide_label = self.slide_labels[slide_id]
return tiles, tiles_locations, slide_label, slide_id
def __len__(self):
# Length is set to the number of slides
return len(self.tiles_files)