forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier_trainer_test.py
240 lines (209 loc) · 7.72 KB
/
classifier_trainer_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Lint as: python3
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Unit tests for the classifier trainer models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import json
import os
import sys
from typing import Any, Callable, Iterable, Mapping, MutableMapping, Optional, Tuple
from absl import flags
from absl.testing import flagsaver
from absl.testing import parameterized
import tensorflow as tf
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.utils.flags import core as flags_core
from official.vision.image_classification import classifier_trainer
classifier_trainer.define_classifier_flags()
def distribution_strategy_combinations() -> Iterable[Tuple[Any, ...]]:
"""Returns the combinations of end-to-end tests to run."""
return combinations.combine(
distribution=[
strategy_combinations.default_strategy,
strategy_combinations.cloud_tpu_strategy,
strategy_combinations.one_device_strategy_gpu,
strategy_combinations.mirrored_strategy_with_two_gpus,
],
model=[
'efficientnet',
'resnet',
],
dataset=[
'imagenet',
],
)
def get_params_override(params_override: Mapping[str, Any]) -> str:
"""Converts params_override dict to string command."""
return '--params_override=' + json.dumps(params_override)
def basic_params_override(dtype: str = 'float32') -> MutableMapping[str, Any]:
"""Returns a basic parameter configuration for testing."""
return {
'train_dataset': {
'builder': 'synthetic',
'use_per_replica_batch_size': True,
'batch_size': 1,
'image_size': 224,
'dtype': dtype,
},
'validation_dataset': {
'builder': 'synthetic',
'batch_size': 1,
'use_per_replica_batch_size': True,
'image_size': 224,
'dtype': dtype,
},
'train': {
'steps': 1,
'epochs': 1,
'callbacks': {
'enable_checkpoint_and_export': True,
'enable_tensorboard': False,
},
},
'evaluation': {
'steps': 1,
},
}
@flagsaver.flagsaver
def run_end_to_end(main: Callable[[Any], None],
extra_flags: Optional[Iterable[str]] = None,
model_dir: Optional[str] = None):
"""Runs the classifier trainer end-to-end."""
extra_flags = [] if extra_flags is None else extra_flags
args = [sys.argv[0], '--model_dir', model_dir] + extra_flags
flags_core.parse_flags(argv=args)
main(flags.FLAGS)
class ClassifierTest(tf.test.TestCase, parameterized.TestCase):
"""Unit tests for Keras models."""
_tempdir = None
@classmethod
def setUpClass(cls): # pylint: disable=invalid-name
super(ClassifierTest, cls).setUpClass()
def tearDown(self):
super(ClassifierTest, self).tearDown()
tf.io.gfile.rmtree(self.get_temp_dir())
@combinations.generate(distribution_strategy_combinations())
def test_end_to_end_train_and_eval(self, distribution, model, dataset):
"""Test train_and_eval and export for Keras classifier models."""
# Some parameters are not defined as flags (e.g. cannot run
# classifier_train.py --batch_size=...) by design, so use
# "--params_override=..." instead
model_dir = self.create_tempdir().full_path
base_flags = [
'--data_dir=not_used',
'--model_type=' + model,
'--dataset=' + dataset,
]
train_and_eval_flags = base_flags + [
get_params_override(basic_params_override()),
'--mode=train_and_eval',
]
run = functools.partial(
classifier_trainer.run, strategy_override=distribution)
run_end_to_end(
main=run, extra_flags=train_and_eval_flags, model_dir=model_dir)
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.one_device_strategy_gpu,
],
model=[
'efficientnet',
'resnet',
],
dataset='imagenet',
dtype='float16',
))
def test_gpu_train(self, distribution, model, dataset, dtype):
"""Test train_and_eval and export for Keras classifier models."""
# Some parameters are not defined as flags (e.g. cannot run
# classifier_train.py --batch_size=...) by design, so use
# "--params_override=..." instead
model_dir = self.create_tempdir().full_path
base_flags = [
'--data_dir=not_used',
'--model_type=' + model,
'--dataset=' + dataset,
]
train_and_eval_flags = base_flags + [
get_params_override(basic_params_override(dtype)),
'--mode=train_and_eval',
]
export_params = basic_params_override()
export_path = os.path.join(model_dir, 'export')
export_params['export'] = {}
export_params['export']['destination'] = export_path
export_flags = base_flags + [
'--mode=export_only',
get_params_override(export_params)
]
run = functools.partial(
classifier_trainer.run, strategy_override=distribution)
run_end_to_end(
main=run, extra_flags=train_and_eval_flags, model_dir=model_dir)
run_end_to_end(main=run, extra_flags=export_flags, model_dir=model_dir)
self.assertTrue(os.path.exists(export_path))
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.cloud_tpu_strategy,
],
model=[
'efficientnet',
'resnet',
],
dataset='imagenet',
dtype='bfloat16',
))
def test_tpu_train(self, distribution, model, dataset, dtype):
"""Test train_and_eval and export for Keras classifier models."""
# Some parameters are not defined as flags (e.g. cannot run
# classifier_train.py --batch_size=...) by design, so use
# "--params_override=..." instead
model_dir = self.create_tempdir().full_path
base_flags = [
'--data_dir=not_used',
'--model_type=' + model,
'--dataset=' + dataset,
]
train_and_eval_flags = base_flags + [
get_params_override(basic_params_override(dtype)),
'--mode=train_and_eval',
]
run = functools.partial(
classifier_trainer.run, strategy_override=distribution)
run_end_to_end(
main=run, extra_flags=train_and_eval_flags, model_dir=model_dir)
@combinations.generate(distribution_strategy_combinations())
def test_end_to_end_invalid_mode(self, distribution, model, dataset):
"""Test the Keras EfficientNet model with `strategy`."""
model_dir = self.create_tempdir().full_path
extra_flags = [
'--data_dir=not_used',
'--mode=invalid_mode',
'--model_type=' + model,
'--dataset=' + dataset,
get_params_override(basic_params_override()),
]
run = functools.partial(
classifier_trainer.run, strategy_override=distribution)
with self.assertRaises(ValueError):
run_end_to_end(main=run, extra_flags=extra_flags, model_dir=model_dir)
if __name__ == '__main__':
tf.test.main()