-
Notifications
You must be signed in to change notification settings - Fork 160
/
Copy pathdata_utils.py
258 lines (210 loc) · 7.14 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""Data utilities."""
import torch
from torch.autograd import Variable
import operator
import json
def hyperparam_string(config):
"""Hyerparam string."""
exp_name = ''
exp_name += 'model_%s__' % (config['data']['task'])
exp_name += 'src_%s__' % (config['model']['src_lang'])
exp_name += 'trg_%s__' % (config['model']['trg_lang'])
exp_name += 'attention_%s__' % (config['model']['seq2seq'])
exp_name += 'dim_%s__' % (config['model']['dim'])
exp_name += 'emb_dim_%s__' % (config['model']['dim_word_src'])
exp_name += 'optimizer_%s__' % (config['training']['optimizer'])
exp_name += 'n_layers_src_%d__' % (config['model']['n_layers_src'])
exp_name += 'n_layers_trg_%d__' % (1)
exp_name += 'bidir_%s' % (config['model']['bidirectional'])
return exp_name
def read_config(file_path):
"""Read JSON config."""
json_object = json.load(open(file_path, 'r'))
return json_object
def construct_vocab(lines, vocab_size):
"""Construct a vocabulary from tokenized lines."""
vocab = {}
for line in lines:
for word in line:
if word not in vocab:
vocab[word] = 1
else:
vocab[word] += 1
# Discard start, end, pad and unk tokens if already present
if '<s>' in vocab:
del vocab['<s>']
if '<pad>' in vocab:
del vocab['<pad>']
if '</s>' in vocab:
del vocab['</s>']
if '<unk>' in vocab:
del vocab['<unk>']
word2id = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
id2word = {
0: '<s>',
1: '<pad>',
2: '</s>',
3: '<unk>',
}
sorted_word2id = sorted(
vocab.items(),
key=operator.itemgetter(1),
reverse=True
)
sorted_words = [x[0] for x in sorted_word2id[:vocab_size]]
for ind, word in enumerate(sorted_words):
word2id[word] = ind + 4
for ind, word in enumerate(sorted_words):
id2word[ind + 4] = word
return word2id, id2word
def read_dialog_summarization_data(src, config, trg):
"""Read data from files."""
print 'Reading source data ...'
src_lines = []
with open(src, 'r') as f:
for ind, line in enumerate(f):
src_lines.append(line.strip().split())
print 'Reading target data ...'
trg_lines = []
with open(trg, 'r') as f:
for line in f:
trg_lines.append(line.strip().split())
print 'Constructing common vocabulary ...'
word2id, id2word = construct_vocab(
src_lines + trg_lines, config['data']['n_words_src']
)
src = {'data': src_lines, 'word2id': word2id, 'id2word': id2word}
trg = {'data': trg_lines, 'word2id': word2id, 'id2word': id2word}
return src, trg
def read_nmt_data(src, config, trg=None):
"""Read data from files."""
print 'Reading source data ...'
src_lines = []
with open(src, 'r') as f:
for ind, line in enumerate(f):
src_lines.append(line.strip().split())
print 'Constructing source vocabulary ...'
src_word2id, src_id2word = construct_vocab(
src_lines, config['data']['n_words_src']
)
src = {'data': src_lines, 'word2id': src_word2id, 'id2word': src_id2word}
del src_lines
if trg is not None:
print 'Reading target data ...'
trg_lines = []
with open(trg, 'r') as f:
for line in f:
trg_lines.append(line.strip().split())
print 'Constructing target vocabulary ...'
trg_word2id, trg_id2word = construct_vocab(
trg_lines, config['data']['n_words_trg']
)
trg = {'data': trg_lines, 'word2id': trg_word2id, 'id2word': trg_id2word}
else:
trg = None
return src, trg
def read_summarization_data(src, trg):
"""Read data from files."""
src_lines = [line.strip().split() for line in open(src, 'r')]
trg_lines = [line.strip().split() for line in open(trg, 'r')]
word2id, id2word = construct_vocab(src_lines + trg_lines, 30000)
src = {'data': src_lines, 'word2id': word2id, 'id2word': id2word}
trg = {'data': trg_lines, 'word2id': word2id, 'id2word': id2word}
return src, trg
def get_minibatch(
lines, word2ind, index, batch_size,
max_len, add_start=True, add_end=True
):
"""Prepare minibatch."""
if add_start and add_end:
lines = [
['<s>'] + line + ['</s>']
for line in lines[index:index + batch_size]
]
elif add_start and not add_end:
lines = [
['<s>'] + line
for line in lines[index:index + batch_size]
]
elif not add_start and add_end:
lines = [
line + ['</s>']
for line in lines[index:index + batch_size]
]
elif not add_start and not add_end:
lines = [
line
for line in lines[index:index + batch_size]
]
lines = [line[:max_len] for line in lines]
lens = [len(line) for line in lines]
max_len = max(lens)
input_lines = [
[word2ind[w] if w in word2ind else word2ind['<unk>'] for w in line[:-1]] +
[word2ind['<pad>']] * (max_len - len(line))
for line in lines
]
output_lines = [
[word2ind[w] if w in word2ind else word2ind['<unk>'] for w in line[1:]] +
[word2ind['<pad>']] * (max_len - len(line))
for line in lines
]
mask = [
([1] * (l - 1)) + ([0] * (max_len - l))
for l in lens
]
input_lines = Variable(torch.LongTensor(input_lines)).cuda()
output_lines = Variable(torch.LongTensor(output_lines)).cuda()
mask = Variable(torch.FloatTensor(mask)).cuda()
return input_lines, output_lines, lens, mask
def get_autoencode_minibatch(
lines, word2ind, index, batch_size,
max_len, add_start=True, add_end=True
):
"""Prepare minibatch."""
if add_start and add_end:
lines = [
['<s>'] + line + ['</s>']
for line in lines[index:index + batch_size]
]
elif add_start and not add_end:
lines = [
['<s>'] + line
for line in lines[index:index + batch_size]
]
elif not add_start and add_end:
lines = [
line + ['</s>']
for line in lines[index:index + batch_size]
]
elif not add_start and not add_end:
lines = [
line
for line in lines[index:index + batch_size]
]
lines = [line[:max_len] for line in lines]
lens = [len(line) for line in lines]
max_len = max(lens)
input_lines = [
[word2ind[w] if w in word2ind else word2ind['<unk>'] for w in line[:-1]] +
[word2ind['<pad>']] * (max_len - len(line))
for line in lines
]
output_lines = [
[word2ind[w] if w in word2ind else word2ind['<unk>'] for w in line[1:]] +
[word2ind['<pad>']] * (max_len - len(line))
for line in lines
]
mask = [
([1] * (l)) + ([0] * (max_len - l))
for l in lens
]
input_lines = Variable(torch.LongTensor(input_lines)).cuda()
output_lines = Variable(torch.LongTensor(output_lines)).cuda()
mask = Variable(torch.FloatTensor(mask)).cuda()
return input_lines, output_lines, lens, mask