-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
52 lines (39 loc) · 1.27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas as pd
import numpy as np
import sklearn
from sklearn import linear_model
from sklearn.utils import shuffle
import matplotlib.pyplot as pyplot
import pickle
from matplotlib import style
data=pd.read_csv("student-mat.csv", sep=";")
data=data[["G1","G2","G3","studytime","failures","absences"]]
predict="G3"
x=np.array(data.drop([predict],1))
y=np.array(data[predict])
x_train,x_test,y_train,y_test=sklearn.model_selection.train_test_split(x,y,test_size=0.1)
'''
best=0
for _ in range(30):
x_train,x_test,y_train,y_test=sklearn.model_selection.train_test_split(x,y,test_size=0.1)
linear=linear_model.LinearRegression()
linear.fit(x_train,y_train)
acc=linear.score(x_test,y_test)
print(acc)
if acc>best:
best=acc
with open("studentmodel.pickle","wb") as f:
pickle.dump(linear,f)'''
pickle_in=open("studentmodel.pickle","rb")
linear=pickle.load(pickle_in)
print('Coefficient: \n',linear.coef_)
print('Intercept: \n',linear.intercept_)
predictions=linear.predict(x_test)
for x in range(len(predictions)):
print(predictions[x],x_test[x],y_test[x])
p='G2'
style.use("ggplot")
pyplot.scatter(data[p],data["G3"])
pyplot.xlabel(p)
pyplot.ylabel("Final Grade")
pyplot.show()