-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdisc_edit.py
251 lines (218 loc) · 11.5 KB
/
disc_edit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from __future__ import annotations
import math
import random
import sys
from argparse import ArgumentParser
import einops
import k_diffusion as K
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from torch import autocast
from PIL import Image, ImageDraw, ImageFont
import textwrap
import json
import os
from dataset_loading import get_dataset
from edit_dataset import EditITMDataset
from torch.utils.data import DataLoader
from tqdm import tqdm
import clip
from collections import defaultdict
sys.path.append("./stable_diffusion")
from stable_diffusion.ldm.util import instantiate_from_config
# Assuming CFGDenoiser and other dependencies are correctly set up,
# no changes needed there for image aspect ratio handling.
def calculate_clip_similarity(generated_images, original_image, clip_model, preprocess, device):
original_image_processed = preprocess(original_image).unsqueeze(0).to(device)
with torch.no_grad():
original_features = clip_model.encode_image(original_image_processed)
similarities = []
for img in generated_images:
img_processed = preprocess(img).unsqueeze(0).to(device)
with torch.no_grad():
generated_features = clip_model.encode_image(img_processed)
similarity = torch.nn.functional.cosine_similarity(generated_features, original_features, dim=-1)
similarities.append(similarity.item())
#concat both img and original_image for visualization
# original_image_np = np.array(original_image)
# img_np = np.array(img)
# both = np.concatenate((original_image_np, img_np), axis=1)
# both = Image.fromarray(both)
# if not os.path.exists('eval_output/edit_itm/flickr_edit_clip_sim/'):
# os.makedirs('eval_output/edit_itm/flickr_edit_clip_sim/')
# random_id = random.randint(0, 100000)
# both.save(f'eval_output/edit_itm/flickr_edit_clip_sim/{similarity.item()}_{random_id}.png')
# average_similarity = sum(similarities) / len(similarities)
# dist = 1 - average_similarity
dists = [1 - sim for sim in similarities]
return dists
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale, conditional_only=False):
# cfg_z = einops.repeat(z, "1 ... -> n ...", n=3)
cfg_z = z.repeat(3, 1, 1, 1)
# cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=3)
cfg_sigma = sigma.repeat(3)
cfg_cond = {
"c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], uncond["c_crossattn"][0]])],
"c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])],
}
out_cond, out_img_cond, out_uncond = self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(3)
if conditional_only:
return out_cond
else:
return out_uncond + text_cfg_scale * (out_cond - out_img_cond) + image_cfg_scale * (out_img_cond - out_uncond)
def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
if vae_ckpt is not None:
print(f"Loading VAE from {vae_ckpt}")
vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"]
sd = {
k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v
for k, v in sd.items()
}
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
return model
def calculate_accuracy(losses):
correct_count = 0
for loss in losses:
if loss[0] < min(loss[1:]):
correct_count += 1
return correct_count, len(losses) # Return counts for aggregation
def main():
parser = ArgumentParser()
parser.add_argument("--config", default="configs/generate.yaml", type=str)
parser.add_argument("--ckpt", default="aurora-mixratio-15-15-1-1-42k-steps.ckpt", type=str)
parser.add_argument("--vae-ckpt", default=None, type=str)
parser.add_argument("--task", default='flickr_edit', type=str)
parser.add_argument("--batchsize", default=1, type=int)
parser.add_argument("--samples", default=4, type=int)
parser.add_argument("--size", default=512, type=int)
parser.add_argument("--steps", default=20, type=int)
parser.add_argument("--cfg-text", default=7.5, type=float)
parser.add_argument("--cfg-image", default=1.5, type=float)
parser.add_argument('--targets', type=str, nargs='*', help="which target groups for mmbias",default='')
parser.add_argument("--device", default=0, type=int, help="GPU device index")
parser.add_argument("--log_imgs", action="store_true")
parser.add_argument("--conditional_only", action="store_true")
parser.add_argument("--metric", default="latent", type=str)
parser.add_argument("--split", default='test', type=str)
parser.add_argument("--skip", default=1, type=int)
args = parser.parse_args()
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
config = OmegaConf.load(args.config)
model = load_model_from_config(config, args.ckpt, args.vae_ckpt)
model.eval()
model.to(dtype=torch.float)
model = model.to(device)
model_wrap = K.external.CompVisDenoiser(model)
model_wrap_cfg = CFGDenoiser(model_wrap)
null_token = model.get_learned_conditioning([""])
clip_model, preprocess = clip.load("ViT-B/32", device=device)
dataset = EditITMDataset(split=args.split, task=args.task, min_resize_res=args.size, max_resize_res=args.size, crop_res=args.size)
dataloader= DataLoader(dataset,batch_size=args.batchsize,num_workers=1,worker_init_fn=None,shuffle=False, persistent_workers=True)
if os.path.exists(f'itm_evaluation/{args.split}/{args.task}/{args.ckpt.replace("/", "_")}_results.json'):
with open(f'itm_evaluation/{args.split}/{args.task}/{args.ckpt.replace("/", "_")}_results.json', 'r') as f:
results = json.load(f)
results = defaultdict(dict, results)
else:
results = defaultdict(dict)
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
if len(batch['input'][0].shape) < 3:
continue
for j, prompt in enumerate(batch['texts']):
# check if we already have results for this image
img_id = batch['path'][0] + f'_{i}'
# if img_id in results and ('pos' in results[img_id] and 'neg' in results[img_id]):
# continue
with torch.no_grad(), autocast("cuda"), model.ema_scope():
prompt = prompt[0]
cond = {}
cond["c_crossattn"] = [model.get_learned_conditioning([prompt])]
input_image = batch['input'][0].to(device)
cond["c_concat"] = [model.encode_first_stage(input_image.unsqueeze(0)).mode()]
scaled_input = model.scale_factor * input_image
uncond = {}
uncond["c_crossattn"] = [null_token]
uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]
sigmas = model_wrap.get_sigmas(args.steps)
# move everything to the device
cond = {k: [v.to(device) for v in vs] for k, vs in cond.items()}
uncond = {k: [v.to(device) for v in vs] for k, vs in uncond.items()}
cond["c_concat"][0] = cond["c_concat"][0].repeat(args.samples, 1, 1, 1)
cond["c_crossattn"][0] = cond["c_crossattn"][0].repeat(args.samples, 1, 1)
uncond["c_concat"][0] = uncond["c_concat"][0].repeat(args.samples, 1, 1, 1)
uncond["c_crossattn"][0] = uncond["c_crossattn"][0].repeat(args.samples, 1, 1)
extra_args = {
"cond": cond,
"uncond": uncond,
"text_cfg_scale": args.cfg_text,
"image_cfg_scale": args.cfg_image,
"conditional_only": args.conditional_only,
}
# torch.manual_seed(i)
torch.manual_seed(42)
z = torch.randn_like(cond["c_concat"][0]) * sigmas[0]
z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas, extra_args=extra_args, disable=True)
x = model.decode_first_stage(z)
x = torch.clamp((x + 1.0) / 2.0, min=0.0, max=1.0)
######## LOG IMAGES ########
input_image_pil = ((input_image + 1) * 0.5).clamp(0, 1)
input_image_pil = input_image_pil.permute(1, 2, 0) # Change from CxHxW to HxWxC for PIL
input_image_pil = (input_image_pil * 255).type(torch.uint8).cpu().numpy()
for k in range(2):
x_ = 255.0 * rearrange(x[k], "c h w -> h w c")
edited_image = x_.type(torch.uint8).cpu().numpy()
both = np.concatenate((input_image_pil, edited_image), axis=1)
both = Image.fromarray(both)
out_base = f'itm_evaluation/{args.split}/{args.task}/{args.ckpt.replace("/", "_")}'
if not os.path.exists(out_base):
os.makedirs(out_base)
prompt_str = prompt.replace(' ', '_')[0:100]
both.save(f'{out_base}/{i}_{"correct" if j == 0 else "incorrect"}_sample{k}_{prompt}.png')
######## CLIP ########
edited_images = []
for k in range(args.samples):
x_ = 255.0 * rearrange(x[k], "c h w -> h w c")
edited_image = Image.fromarray(x_.type(torch.uint8).cpu().numpy())
edited_images.append(edited_image)
input_image_pil = ((input_image + 1) * 0.5).clamp(0, 1)
input_image_pil = input_image_pil.permute(1, 2, 0) # Change from CxHxW to HxWxC for PIL
input_image_pil = (input_image_pil * 255).type(torch.uint8).cpu().numpy()
input_image_pil = Image.fromarray(input_image_pil)
dists_clip = calculate_clip_similarity(edited_images, input_image_pil, clip_model, preprocess, device)
######## LATENT ########
z = z.flatten(1)
original_latent = cond["c_concat"][0].flatten(1)
dists_latent = torch.norm(z - original_latent, dim=1, p=2).cpu().numpy().tolist()
cos_sim = torch.nn.functional.cosine_similarity(z, original_latent, dim=1).cpu().numpy().tolist()
cos_dists_latent = [1 - sim for sim in cos_sim]
######## SAVE RESULTS ########
img_id = batch['path'][0] + f'_{i}'
results[img_id]['pos' if j == 0 else 'neg'] = {
"prompt" : prompt,
"clip": dists_clip,
"latent_l2": dists_latent,
"latent_cosine": cos_dists_latent
}
with open(f'itm_evaluation/{args.split}/{args.task}/{args.ckpt.replace("/", "_")}_results.json', 'w') as f:
json.dump(results, f, indent=2)
if __name__ == "__main__":
main()