See the head of aalto-predict-2021.py
for examples of the best performing runs.
For example, run:
./aalto-predict-2021.py --train trecvid/train/short --test trecvid/test/short --hidden_size 560 \
--features i3d-25-128-avg,audioset-527,bert3 --epochs 300 --output run2
Run
./aalto-predict.py --target short --hidden_size 80 --epochs 750 \
--picsom_features i3d-25-128-avg,audioset-527 --output i3d+audio_80_750
The data are read and organised as such :
vid, lab, data_x, data_y = read_data(args)
Vid, data_y list obtained from 'data/2020/scores_v2.csv' and data/2020/test_urls.csv
data_x (for the entire dataset) and lab from the the picsom features which were first extracted outside of the media-memorability repo and then uploaded to media-memorability/picsom/2020/
The test and train ids are extracted from
dev = picsom_class('picsom/'+year+'/classes/'+dev)
test = picsom_class('picsom/'+year+'/classes/test')
The predictions are saved to --output
Run
./aalto-predict.py --target long --hidden_size 260 --epochs 160 \
--picsom_features i3d-25-128-avg,audioset-527 --output i3d+audio_260_160
Run
./aalto-predict.py --target short --hidden_size 80 --epochs 750 \
--picsom_features i3d-25-128-avg,audioset-527 --output i3d+audio_80_750 --extra surrey20
which will create file short_6_i3d+audio_80_750-surrey20.csv
containing the short-term predictions for the surrey20
data set.
Download https://github.com/aalto-cbir/PicSOM
Read and follow PicSOM's README.md.
Use PicSOM's analyse=insert
mode.
Use PicSOM's analyse=create extractfeatures=true
mode.
Use PicSOM's analyse=exportorderedfeatures
mode.