-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdefaults.py
54 lines (46 loc) · 1.58 KB
/
defaults.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from config import CfgNode as CN
_C = CN()
_C.TRAINING = CN()
_C.TRAINING.project_dir = "./output/default/"
_C.TRAINING.data_path = "/home/mayoughi/tvqa_experiment/dataset/friends_frames/"
_C.TRAINING.epochs = 100
_C.TRAINING.lr_decay_epoch = 50
_C.TRAINING.lr_decay_epochs = [50, 75, 90]
_C.TRAINING.pretrained = True
_C.TRAINING.lr = 0.12
_C.TRAINING.batch_size = 256
_C.TRAINING.lr_decay_rate = 0.1
_C.TRAINING.momentum = 0.9
_C.TRAINING.weight_decay = 0.0001
_C.TRAINING.last_commit = "unknown"
_C.TRAINING.supervised = False
_C.TRAINING.data_mode = "correct_target_id" # cleansed, correct_target_id, weak_label
_C.TRAINING.series = "friends" # friends, bbt
_C.TRAINING.clustering = "KMeans" # AgglomerativeClustering, KMeans, MiniBatchKMeans
_C.TRAINING.kmeans_batch_size = 100 # default
_C.TRAINING.exp_type = "normal" # normal, oracle
_C.TRAINING.ours_or_baseline = "ours" # ours, baseline
# self-supervised parameters
_C.SSL = CN()
_C.SSL.align_alpha = 2
_C.SSL.unif_t = 2
_C.SSL.align_w = 1
_C.SSL.unif_w = 1
_C.SSL.random_crop = 100
_C.SSL.include_unknowns = True
_C.SSL.joint = False
_C.SSL.face_layer = False
_C.SSL.sub_layer = False
_C.SSL.mix_layer = True
_C.SSL.face_layer_out_features = 512
_C.SSL.sub_layer_out_features = 768
_C.SSL.mix_layer_out_features = 1280
_C.SSL.mix_layer_in_features = 1280
_C.SSL.supervised = False
_C.SSL.epsilon = 0.1 #with probability epsilon pick from closest cluster
_C.MODEL = CN()
_C.MODEL.out_features_1 = 512
_C.MODEL.out_features_2 = 512
_C.MODEL.out_features_3 = 512
_C.GLOBAL = CN()