diff --git a/README.Rmd b/README.Rmd
index 257892e7..1114beaa 100644
--- a/README.Rmd
+++ b/README.Rmd
@@ -71,9 +71,6 @@ enrollment duration of 12 months with exponential inter-arrival times.
```{r, message=FALSE, warning=FALSE}
library(gsDesign2)
-library(gsDesign)
-library(dplyr)
-library(gt)
# Basic example
@@ -97,10 +94,14 @@ The resulting failure rate specification is the following table. As many
rows and strata as needed can be specified to approximate whatever
patterns you wish.
-```{r}
-fail_rate %>%
- gt() %>%
- as_raw_html(inline_css = FALSE)
+```{r, eval = FALSE}
+fail_rate |> gt::gt()
+```
+
+```{r, echo = FALSE, eval = getRversion() >= "4.1"}
+fail_rate |>
+ gt::gt() |>
+ gt::as_raw_html(inline_css = FALSE)
```
### Step 2: derive a fixed design with no interim analyses
@@ -111,8 +112,7 @@ Enrollment duration is the sum of `enroll_rate$duration`.
We used `fixed_design()` since there is a single analysis:
```{r}
-fd <- fixed_design(
- method = "ahr",
+fd <- fixed_design_ahr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
alpha = 0.025,
@@ -124,10 +124,14 @@ fd <- fixed_design(
The input enrollment rates have now been scaled to achieve power:
-```{r}
-fd$enroll_rate %>%
- gt() %>%
- as_raw_html(inline_css = FALSE)
+```{r, eval = FALSE}
+fd$enroll_rate |> gt::gt()
+```
+
+```{r, echo = FALSE, eval = getRversion() >= "4.1"}
+fd$enroll_rate |>
+ gt::gt() |>
+ gt::as_raw_html(inline_css = FALSE)
```
The failure and dropout rates remain unchanged from what was input.
@@ -141,11 +145,17 @@ The summary is obtained below. The columns are:
- `Power`: power corresponding to enrollment, failure rate, and
trial targeted events.
-```{r}
-fd %>%
- summary() %>%
- as_gt() %>%
- as_raw_html(inline_css = FALSE)
+```{r, eval = FALSE}
+fd |>
+ summary() |>
+ as_gt()
+```
+
+```{r, echo = FALSE, eval = getRversion() >= "4.1"}
+fd |>
+ summary() |>
+ as_gt() |>
+ gt::as_raw_html(inline_css = FALSE)
```
### Step 3: group sequential design
@@ -198,9 +208,15 @@ treatment) for a proof of concept. Actual bounds and timing selected for
a trial are situation dependent, but we hope the suggestions here are
provocative for what might be considered.
-```{r}
-gsd %>%
- summary() %>%
- as_gt() %>%
- as_raw_html(inline_css = FALSE)
+```{r, eval = FALSE}
+gsd |>
+ summary() |>
+ as_gt()
+```
+
+```{r, echo = FALSE, eval = getRversion() >= "4.1"}
+gsd |>
+ summary() |>
+ as_gt() |>
+ gt::as_raw_html(inline_css = FALSE)
```
diff --git a/README.md b/README.md
index 923e61f2..7dc7f8da 100644
--- a/README.md
+++ b/README.md
@@ -51,9 +51,6 @@ enrollment duration of 12 months with exponential inter-arrival times.
``` r
library(gsDesign2)
-library(gsDesign)
-library(dplyr)
-library(gt)
# Basic example
@@ -78,34 +75,32 @@ rows and strata as needed can be specified to approximate whatever
patterns you wish.
``` r
-fail_rate %>%
- gt() %>%
- as_raw_html(inline_css = FALSE)
+fail_rate |> gt::gt()
```
-
+
stratum |
duration |
fail_rate |
- hr |
dropout_rate |
+ hr |
All |
4 |
0.05776227 |
-1.0 |
-0.001 |
+0.001 |
+1.0 |
All |
Inf |
0.05776227 |
-0.6 |
-0.001 |
+0.001 |
+0.6 |
@@ -120,8 +115,7 @@ and 90% power. We specify a trial duration of 36 months with
analysis:
``` r
-fd <- fixed_design(
- method = "ahr",
+fd <- fixed_design_ahr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
alpha = 0.025,
@@ -134,16 +128,14 @@ fd <- fixed_design(
The input enrollment rates have now been scaled to achieve power:
``` r
-fd$enroll_rate %>%
- gt() %>%
- as_raw_html(inline_css = FALSE)
+fd$enroll_rate |> gt::gt()
```
-
+
stratum |
duration |
rate |
@@ -171,10 +163,9 @@ summary is obtained below. The columns are:
targeted events.
``` r
-fd %>%
- summary() %>%
- as_gt() %>%
- as_raw_html(inline_css = FALSE)
+fd |>
+ summary() |>
+ as_gt()
```
@@ -182,32 +173,30 @@ fd %>%
- Fixed Design under AHR Method |
+ Fixed Design under AHR Method |
Design |
N |
- Event |
- time |
+ Events |
+ Time |
Bound |
alpha |
Power |
- design |
Average hazard ratio |
420.6346 |
-311.0028 |
-36 |
+311.0028 |
+36 |
1.959964 |
0.025 |
-0.9 |
-ahr |
+0.9 |
@@ -264,10 +253,9 @@ a trial are situation dependent, but we hope the suggestions here are
provocative for what might be considered.
``` r
-gsd %>%
- summary() %>%
- as_gt() %>%
- as_raw_html(inline_css = FALSE)
+gsd |>
+ summary() |>
+ as_gt()
```
@@ -296,41 +284,41 @@ gsd %>%
- Analysis: 1 Time: 8 Event: 53.2 AHR: 0.9 N: 279.11 Information fraction: 0.17 |
+ Analysis: 1 Time: 8 N: 279.1 Event: 53.2 AHR: 0.91 Information fraction: 0.17 |
- Futility |
--1.28 |
-0.9000 |
-1.4210 |
-0.0539 |
-0.1000 |
+ Futility |
+-1.28 |
+0.9000 |
+1.4210 |
+0.0539 |
+0.1000 |
- Analysis: 2 Time: 14 Event: 137.2 AHR: 0.8 N: 418.66 Information fraction: 0.44 |
+ Analysis: 2 Time: 14 N: 418.7 Event: 137.2 AHR: 0.82 Information fraction: 0.44 |
- Futility |
-0.00 |
-0.5000 |
-1.0000 |
-0.1451 |
-0.5091 |
+ Futility |
+0.00 |
+0.5000 |
+1.0000 |
+0.1451 |
+0.5091 |
- Analysis: 3 Time: 24 Event: 238.4 AHR: 0.7 N: 418.66 Information fraction: 0.76 |
+ Analysis: 3 Time: 24 N: 418.7 Event: 238.4 AHR: 0.72 Information fraction: 0.76 |
- Efficacy |
-2.30 |
-0.0106 |
-0.7421 |
-0.5582 |
-0.0106 |
+ Efficacy |
+2.30 |
+0.0106 |
+0.7421 |
+0.5582 |
+0.0106 |
- Analysis: 4 Time: 36 Event: 309.5 AHR: 0.7 N: 418.66 Information fraction: 1 |
+ Analysis: 4 Time: 36 N: 418.7 Event: 309.5 AHR: 0.69 Information fraction: 1 |
- Efficacy |
-2.02 |
-0.0219 |
-0.7951 |
-0.8000 |
- 0.0244 |
+ Efficacy |
+2.02 |
+0.0219 |
+0.7951 |
+0.8000 |
+ 0.0244 |