-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrte_train.py
205 lines (174 loc) · 8.94 KB
/
grte_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import argparse
import json
import torch.nn as nn
from bert4keras.tokenizers import Tokenizer
from sklearn.model_selection import KFold
from tqdm import tqdm
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import BertConfig
from model import *
from util import *
def train():
output_path = os.path.join(args.output_path)
train_path = os.path.join(args.base_path, args.dataset, "train.json")
rel2id_path = os.path.join(args.base_path, args.dataset, "rel2id.json")
log_path = os.path.join(output_path, "log.txt")
if not os.path.exists(output_path):
os.makedirs(output_path)
if not os.path.exists(args.result_path):
os.makedirs(args.result_path)
# label
label_list = ["N/A", "SMH", "SMT", "SS", "MMH", "MMT", "MSH", "MST"]
id2label, label2id = {}, {}
for i, l in enumerate(label_list):
id2label[str(i)] = l
label2id[l] = i
train_data = json.load(open(train_path))
id2predicate, predicate2id = json.load(open(rel2id_path))
all_data = np.array(train_data)
kf = KFold(n_splits=args.k_num, shuffle=True, random_state=42)
fold = 0
for train_index, val_index in kf.split(all_data):
fold += 1
print("=" * 80)
print(f"正在训练第 {fold} 折的数据")
train_data = all_data[train_index]
val_data = all_data[val_index]
tokenizer = Tokenizer(args.bert_vocab_path)
config = BertConfig.from_pretrained(args.pretrained_model_path)
config.num_p = len(id2predicate)
config.num_label = len(label_list)
config.rounds = args.rounds
config.fix_bert_embeddings = args.fix_bert_embeddings
train_model = GRTE.from_pretrained(pretrained_model_name_or_path=args.pretrained_model_path, config=config)
train_model.to("cuda")
scaler = torch.cuda.amp.GradScaler()
dataloader = data_generator(args, train_data, tokenizer, [predicate2id, id2predicate], [label2id, id2label],
args.batch_size, random=True)
val_dataloader = data_generator(args, val_data, tokenizer, [predicate2id, id2predicate], [label2id, id2label],
args.val_batch_size, random=False, is_train=False)
t_total = len(dataloader) * args.num_train_epochs
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in train_model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in train_model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0},
]
base_optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.min_num)
optimizer = GRTEOptimizer(optimizer=base_optimizer, k=5, alpha=0.5)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup * t_total, num_training_steps=t_total
)
best_f1 = -1.0
step = 0
crossentropy = nn.CrossEntropyLoss(reduction="none")
test_pred_path = os.path.join(args.result_path, f"{fold}.json")
for epoch in range(args.num_train_epochs):
print("current epoch:", epoch)
train_model.train()
epoch_loss = 0
with tqdm(total=dataloader.__len__()) as t:
for i, batch in enumerate(dataloader):
batch = [torch.tensor(d).to("cuda") for d in batch[:-1]]
batch_token_ids, batch_mask, batch_label, batch_mask_label = batch
table = train_model(batch_token_ids, batch_mask)
table = table.reshape([-1, len(label_list)])
batch_label = batch_label.reshape([-1])
loss = crossentropy(table, batch_label.long())
loss = (loss * batch_mask_label.reshape([-1])).sum()
scaler.scale(loss).backward()
table_adv = train_model(batch_token_ids, batch_mask)
table_adv = table_adv.reshape([-1, len(label_list)])
loss_adv = crossentropy(table_adv, batch_label.long())
loss_adv = (loss_adv * batch_mask_label.reshape([-1])).sum()
scaler.scale(loss_adv).backward()
step += 1
epoch_loss += loss.item()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(train_model.parameters(), args.max_grad_norm)
scaler.step(optimizer)
scaler.update()
scheduler.step() # Update learning rate schedule
train_model.zero_grad()
t.set_postfix(loss="%.4lf" % (loss.cpu().item()))
t.update(1)
f1, precision, recall = evaluate(args, tokenizer, id2predicate, id2label, label2id, train_model,
val_dataloader, test_pred_path)
if f1 > best_f1:
# Save model checkpoint
best_f1 = f1
torch.save(train_model.state_dict(),
f=f"{args.output_path}/model_{fold}.pth")
epoch_loss = epoch_loss / dataloader.__len__()
with open(log_path, "a", encoding="utf-8") as f:
print("epoch is:%d\tloss is:%f\tf1 is:%f\tprecision is:%f\trecall is:%f\tbest_f1 is:%f\t" % (
int(epoch), epoch_loss, f1, precision, recall, best_f1), file=f)
train_model.load_state_dict(torch.load(f"{args.output_path}/model_{fold}.pth", map_location="cuda"))
f1, precision, recall = evaluate(args, tokenizer, id2predicate, id2label, label2id, train_model,
val_dataloader,
test_pred_path)
print("best model test: f1:%f\tprecision:%f\trecall:%f" % (f1, precision, recall))
torch.cuda.empty_cache()
del train_model
def evaluate(args, tokenizer, id2predicate, id2label, label2id, model, dataloader, evl_path):
X, Y, Z = 1e-10, 1e-10, 1e-10
f = open(evl_path, 'w', encoding='utf-8')
pbar = tqdm()
for batch in dataloader:
batch_ex = batch[-1]
batch = [torch.tensor(d).to("cuda") for d in batch[:-1]]
batch_token_ids, batch_mask = batch
batch_spo = extract_spo_list(args, tokenizer, id2predicate, id2label, label2id, model, batch_ex,
batch_token_ids,
batch_mask)
for i, ex in enumerate(batch_ex):
one = batch_spo[i]
R = set([(tuple(item[0]), item[1], tuple(item[2])) for item in one])
T = set([(tuple(item[0]), item[1], tuple(item[2])) for item in ex['spos']])
X += len(R & T)
Y += len(R)
Z += len(T)
f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
pbar.update()
pbar.set_description(
'f1: %.5f, precision: %.5f, recall: %.5f' % (f1, precision, recall)
)
s = json.dumps({
'text': ex['text'],
'spos': list(T),
'spos_pred': list(R),
'new': list(R - T),
'lack': list(T - R),
}, ensure_ascii=False)
f.write(s + '\n')
pbar.close()
f.close()
f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
return f1, precision, recall
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Model Controller')
parser.add_argument('--rounds', default=4, type=int)
parser.add_argument('--k_num', default=3, type=int)
parser.add_argument('--max_len', default=200, type=int)
parser.add_argument('--dataset', default='bdci', type=str)
parser.add_argument('--batch_size', default=4, type=int)
parser.add_argument('--val_batch_size', default=4, type=int)
parser.add_argument('--learning_rate', default=2e-5, type=float)
parser.add_argument('--num_train_epochs', default=10, type=int)
parser.add_argument('--fix_bert_embeddings', default=False, type=bool)
parser.add_argument('--bert_vocab_path', default="pretrain_models/chinese_pretrain_mrc_macbert_large/vocab.txt",
type=str)
parser.add_argument('--pretrained_model_path', default="pretrain_models/chinese_pretrain_mrc_macbert_large",
type=str)
parser.add_argument('--warmup', default=0.0, type=float)
parser.add_argument('--weight_decay', default=0.0, type=float)
parser.add_argument('--max_grad_norm', default=1.0, type=float)
parser.add_argument('--min_num', default=1e-7, type=float)
parser.add_argument('--base_path', default="data", type=str)
parser.add_argument('--output_path', default="output", type=str)
parser.add_argument('--result_path', default="result", type=str)
args = parser.parse_args()
train()