-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmake_absolute_top_solvent.py
237 lines (209 loc) · 8.34 KB
/
make_absolute_top_solvent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import parmed as pmd
import ligand_files as lf
import rot_bonds as rotbond
import mdtraj as md
import numpy as np
def make_section(text):
# Create dictionary of different section of the topology file
dic = {}
start_section = False
for index, line in enumerate(text):
# '[ ' marks the start of a section
if '[ ' in line:
if not start_section and index == 0:
start_section = True
key = line
dic[key] = []
else:
# break if already next section
break
elif start_section:
# append all the lines that belong to that section
dic[key].append(line)
return dic
def create_A_and_B_state_ligand(line, A_B_state='vdwq_q'):
"""Create A and B state topology for a ligand.
Parameters
----------
line : str
'Atom line': with atomtype, mass, charge,...
A_B_state : str
Interactions in the A state and in the B state.
vdwq_vdwq: ligand fully interacting in A and B state
vdwq_vdw: vdw interactions and electrostatics in the A_state, only vdw in the B_state
vdw_vdwq: charge
vdw_dummy
dummy_vdw
vdwq_dummy
Returns
-------
text : str
Atoms line for topology file with A and B state parameters
"""
atom_number = line.split()[0]
atom_type = line.split()[1]
residue_nr = line.split()[2]
residue_name = line.split()[3]
atom_name = line.split()[4]
cgnr = line.split()[5]
charge = line.split()[6]
mass = line.split()[7]
# A and B state are the same
if A_B_state == 'vdwq_vdwq':
text = line.split(';')[0] + ' ' + atom_type + ' ' + charge + ' ' + mass + '\n'
# Turn on vdw
elif A_B_state == 'dummy_vdw':
charge = str(0.0)
text = ' ' + atom_number + ' d%s ' % atom_type + ' ' + residue_nr + ' ' + \
residue_name + ' ' + atom_name + ' ' + cgnr + ' ' + charge + ' ' + mass + ' ' + \
atom_type + ' ' + charge + ' ' + mass + '\n'
# Turn vdw off
elif A_B_state == 'vdw_dummy':
charge = str(0.0)
text = ' ' + atom_number + ' ' + atom_type + ' ' + residue_nr + ' ' + \
residue_name + ' ' + atom_name + ' ' + cgnr + ' ' + charge + ' ' + mass + \
' d%s ' % atom_type + ' ' + charge + ' ' + mass + '\n'
# Turn vdw and electrostatics off
elif A_B_state == 'vdwq_dummy':
text = line.split(';')[0] + ' ' + ' d%s ' % atom_type + ' 0.0 ' + mass + '\n'
# uncharge
elif A_B_state == 'vdwq_vdw':
text = line.split(';')[0] + ' ' + ' ' + atom_type + ' 0.0 ' + mass + '\n'
# charge
elif A_B_state == 'vdw_vdwq':
text = ' ' + atom_number + ' ' + atom_type + ' ' + residue_nr + ' ' + \
residue_name + ' ' + atom_name + ' ' + cgnr + ' ' + str(0.0) + ' ' + \
mass + ' ' + atom_type + ' ' + charge + ' ' + mass + '\n'
# Posre off
elif A_B_state == 'dummy':
charge = str(0.0)
text = ' ' + atom_number + ' d%s ' % atom_type + ' ' + residue_nr + ' ' + \
residue_name + ' ' + atom_name + ' ' + cgnr + ' ' + charge + ' ' + mass + ' ' + '\n'
# Turn vdw and electrostatics off
elif A_B_state == 'vdwq':
text = line.split(';')[0] + '\n'
else:
print('Transformation not implemented yet')
return text
def create_top(in_top, out_top, A_B_state_ligA, ligand='LIG'):
"""Create separated topology
Parameters
----------
in_top : str
topology file of complex and both ligands (generated from combine_ligands_top)
out_top: str
name for output topology file
A_B_state_ligA : str
Interactions in the A state and in the B state for ligand A.
vdwq_vdwq: ligand fully interacting in A and B state
vdwq_vdw: vdw interactions and electrostatics in the A_state, only vdw in the B_state
vdw_vdwq: charge
vdw_dummy
dummy_vdw
vdwq_dummy
A_B_state_ligB: str
Interactions in the A state and in the B state for ligand B
ligand = str
three letter code for the ligand residue, default = 'LIG'
Examples
--------
Turn on vdw ligand B: create_top(top, turnon_vdw_B, 'vdwq_vdwq', 'dummy_vdw')
Charge ligand B while uncharging ligand A: create_top(top, charge_uncharge, 'vdwq_vdw', 'vdw_vdwq')
Turn off vdw ligand A: create_top(top, turnoff_vdw_A, 'vdw_dummy', 'vdwq_vdwq')
"""
file = open(in_top, 'r')
text = file.readlines()
file.close()
file = open(out_top, 'w')
end_text = len(text)
count = 0
outtext = []
section = 0
while count < end_text:
# Create dictionary of different sections
dic = make_section(text[count:])
count += 1
# Loop through sections
for key, value in dic.items():
# For every atomtype add a dummy-atomtype with no vdW interactions
if 'atomtypes' in key:
outtext.append(key)
outtext.append(value)
for v in value:
if v.startswith(';') or v.startswith('\n'):
continue
else:
at_line = v.split()
dummy = 'd' + at_line[0] + ' ' + at_line[1] + ' ' + at_line[
2] + ' 0.0 ' + ' A ' + ' 0.0 ' + ' 0.0\n'
outtext.append(dummy)
outtext.append('\n\n')
# Modify the ligand system
elif 'atoms' in key and ligand in value[2].split():
outtext.append(key)
atomindex_i, atomindex_j = [], []
for v in value:
if v.startswith(';') or v.startswith('\n'):
outtext.append(v)
# For ligand A create an A and a B state according to A_B_state_ligA
if ligand in v and int(v.split()[2]) == 1 and not v.startswith(';'):
atomindex_i.append(v.split()[0])
line = create_A_and_B_state_ligand(v, A_B_state_ligA)
outtext.append(line)
else:
outtext.append(key)
outtext.append(value)
section += 1
for sec in outtext:
for line in sec:
file.write(line)
file.close()
return out_top
def write_itp_restraints(dih, values, forceconst_A, forceconst_B, file):
"""Add dihedral restraints
Parameters
----------
dih: list
nested list of ligand atoms selected for restraints
values: list
List of values for dihedral
forceconst_A/B: int
forceconstant for restraints (kcal/mol)
file: str
name of .itp file for restraints (e.g. 'dihre.itp')
"""
fc_rad_a = forceconst_A * 4.184
fc_rad_b = forceconst_B * 4.184
file = open(file, 'w')
file.write('[ intermolecular_interactions ] \n[ dihedrals ] \n')
file.write('; ai aj ak al type thA fcA thB fcB\n')
for inx, d in enumerate(dih):
file.write(' %s %s %s %s 2 %.2f %.2f %.2f %.2f\n' % (
d[0], d[1], d[2], d[3], values[inx], fc_rad_a, values[inx], fc_rad_b))
file.close()
return
def get_dihedrals(ligand,solvent,complex, lig):
'''Get dihedral around rotatable bond'''
traj = md.load(complex)
topology = traj.topology
ligand_top = topology.select('resname %s' % lig).tolist()
len_lig = len(ligand_top)
print(len_lig)
rot_bonds = rotbond.rota_bonds(ligand)
traj_solvent = md.load(solvent)
topology_solvent = traj_solvent.topology
ligand_top_solvent = topology_solvent.select('resname UNL').tolist()
print(len(ligand_top_solvent))
dih = []
values = []
for rb in rot_bonds:
rb_solvent = [ligand_top_solvent[r] for r in rb]
rb = [ligand_top[r] for r in rb]
dih1 = np.rad2deg(md.compute_dihedrals(traj, [np.array(rb)]))
dih.append([r + 1 for r in rb_solvent])
values.append(round(float(dih1[0]), 2))
return dih, values, len_lig
def restrain_rot_bonds(ligand, solvent,pdb,lig,folder):
dih_A, values_A, len_ligA = get_dihedrals(ligand,solvent,pdb,lig)
write_itp_restraints(dih_A, values_A, 0, 5, '%s/rot_bonds_on.itp' % folder)
return