-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathAssignment 7 Problem 1.R
98 lines (71 loc) · 2.41 KB
/
Assignment 7 Problem 1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Assignment 7 Problem 1
# install.packages("ggplot2")
# install.packages("maps")
# install.packages("ggmap")
library(ggplot2)
library(maps)
library(ggmap)
statesMap = map_data("state")
polling = read.csv("PollingImputed.csv")
Train = subset(polling, Year == 2004 | Year == 2008)
Test = subset(polling, Year == 2012)
mod2 = glm(Republican~SurveyUSA+DiffCount, data=Train, family="binomial")
TestPrediction = predict(mod2, newdata=Test, type="response")
TestPredictionBinary = as.numeric(TestPrediction > 0.5)
predictionDataFrame = data.frame(TestPrediction, TestPredictionBinary, Test$State)
predictionDataFrame$region = tolower(predictionDataFrame$Test.State)
predictionMap = merge(statesMap, predictionDataFrame, by = "region")
predictionMap = predictionMap[order(predictionMap$order),]
ggplot(predictionMap, aes(x = long, y = lat, group = group, fill = TestPredictionBinary)) + geom_polygon(color = "black")
# Read in data
polling = read.csv("PollingData.csv")
str(polling)
table(polling$Year)
summary(polling)
# Install and load mice package
# install.packages("mice")
library(mice)
# Multiple imputation
simple = polling[c("Rasmussen", "SurveyUSA", "PropR", "DiffCount")]
summary(simple)
set.seed(144)
imputed = complete(mice(simple))
summary(imputed)
polling$Rasmussen = imputed$Rasmussen
polling$SurveyUSA = imputed$SurveyUSA
summary(polling)
# Video 3
# Subset data into training set and test set
Train = subset(polling, Year == 2004 | Year == 2008)
Test = subset(polling, Year == 2012)
# Smart Baseline
table(Train$Republican)
sign(20)
sign(-10)
sign(0)
table(sign(Train$Rasmussen))
table(Train$Republican, sign(Train$Rasmussen))
# Video 4
# Multicollinearity
cor(Train)
str(Train)
cor(Train[c("Rasmussen", "SurveyUSA", "PropR", "DiffCount", "Republican")])
# Logistic Regression Model
mod1 = glm(Republican~PropR, data=Train, family="binomial")
summary(mod1)
# Training set predictions
pred1 = predict(mod1, type="response")
table(Train$Republican, pred1 >= 0.5)
# Two-variable model
mod2 = glm(Republican~SurveyUSA+DiffCount, data=Train, family="binomial")
pred2 = predict(mod2, type="response")
table(Train$Republican, pred2 >= 0.5)
summary(mod2)
# Video 5
# Smart baseline accuracy
table(Test$Republican, sign(Test$Rasmussen))
# Test set predictions
TestPrediction = predict(mod2, newdata=Test, type="response")
table(Test$Republican, TestPrediction >= 0.5)
# Analyze mistake
subset(Test, TestPrediction >= 0.5 & Republican == 0)