-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_loader.py
214 lines (163 loc) · 6.23 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# data loader
from __future__ import print_function, division
import torch
from skimage import io, transform, color
import numpy as np
import math
#import matplotlib.pyplot as plt
from torch.utils.data import Dataset
#==========================dataset load==========================
class RescaleT(object):
def __init__(self,output_size):
assert isinstance(output_size,(int,tuple))
self.output_size = output_size
def __call__(self,sample):
image, label = sample['image'],sample['label']
h, w = image.shape[:2]
if isinstance(self.output_size,int):
if h > w:
new_h, new_w = self.output_size*h/w,self.output_size
else:
new_h, new_w = self.output_size,self.output_size*w/h
else:
new_h, new_w = self.output_size
new_h, new_w = int(new_h), int(new_w)
# #resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
# img = transform.resize(image,(new_h,new_w),mode='constant')
# lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)
img = transform.resize(image,(self.output_size,self.output_size),mode='constant')
lbl = transform.resize(label,(self.output_size,self.output_size),mode='constant', order=0, preserve_range=True)
return {'image':img,'label':lbl}
class Rescale(object):
def __init__(self,output_size):
assert isinstance(output_size,(int,tuple))
self.output_size = output_size
def __call__(self,sample):
image, label = sample['image'],sample['label']
h, w = image.shape[:2]
if isinstance(self.output_size,int):
if h > w:
new_h, new_w = self.output_size*h/w,self.output_size
else:
new_h, new_w = self.output_size,self.output_size*w/h
else:
new_h, new_w = self.output_size
new_h, new_w = int(new_h), int(new_w)
# #resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
img = transform.resize(image,(new_h,new_w),mode='constant')
lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)
return {'image':img,'label':lbl}
class CenterCrop(object):
def __init__(self,output_size):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
def __call__(self,sample):
image, label = sample['image'], sample['label']
h, w = image.shape[:2]
new_h, new_w = self.output_size
# print("h: %d, w: %d, new_h: %d, new_w: %d"%(h, w, new_h, new_w))
assert((h >= new_h) and (w >= new_w))
h_offset = int(math.floor((h - new_h)/2))
w_offset = int(math.floor((w - new_w)/2))
image = image[h_offset: h_offset + new_h, w_offset: w_offset + new_w]
label = label[h_offset: h_offset + new_h, w_offset: w_offset + new_w]
return {'image': image, 'label': label}
class RandomCrop(object):
def __init__(self,output_size):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
def __call__(self,sample):
image, label = sample['image'], sample['label']
h, w = image.shape[:2]
new_h, new_w = self.output_size
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
image = image[top: top + new_h, left: left + new_w]
label = label[top: top + new_h, left: left + new_w]
return {'image': image, 'label': label}
#csx
class ToTensor(object):
"""Convert ndarrays in sample to Tensors."""
## 不减均值除方差
def __call__(self, sample):
image, label = sample['image'], sample['label']
# image = (image / 255).transpose((2, 0, 1))
# # src = torch.from_numpy(src).float()
# # tar => float to float tensor
# label = label.transpose((2, 0, 1))
# # tar = torch.from_numpy(tar).float()
tmpImg = np.zeros((image.shape[0],image.shape[1],3))
tmpLbl = np.zeros(label.shape)
# tmpImg = (image / 255).transpose((2, 0, 1))
# tmpLbl = label.transpose((2, 0, 1))
image = image/np.max(image)
if(np.max(label)<1e-6):
label = label
else:
label = label/np.max(label)
# if image.shape[2]==1:
# tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
# tmpImg[:,:,1] = (image[:,:,0]-0.485)/0.229
# tmpImg[:,:,2] = (image[:,:,0]-0.485)/0.229
# else:
# tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
# tmpImg[:,:,1] = (image[:,:,1]-0.456)/0.224
# tmpImg[:,:,2] = (image[:,:,2]-0.406)/0.225
# tmpLbl[:,:,0] = label[:,:,0]
# # change the r,g,b to b,r,g from [0,255] to [0,1]
# #transforms.Normalize(mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225))
tmpImg = image.transpose((2, 0, 1))
tmpLbl = label.transpose((2, 0, 1))
return {'image': torch.from_numpy(tmpImg),
'label': torch.from_numpy(tmpLbl)}
class BuildingDataset(Dataset):
def __init__(self,img_name_list,lbl_name_list,transform=None):
# self.root_dir = root_dir
# self.image_name_list = glob.glob(image_dir+'*.png')
# self.label_name_list = glob.glob(label_dir+'*.png')
self.image_name_list = img_name_list
self.label_name_list = lbl_name_list
self.transform = transform
def __len__(self):
return len(self.image_name_list)
def __getitem__(self,idx):
# image = Image.open(self.image_name_list[idx])#io.imread(self.image_name_list[idx])
# label = Image.open(self.label_name_list[idx])#io.imread(self.label_name_list[idx])
image = io.imread(self.image_name_list[idx], plugin='pil')
if(0==len(self.label_name_list)):
label_3 = np.zeros(image.shape)
else:
label_3 = io.imread(self.label_name_list[idx], plugin='pil')
#print("len of label3")
#print(len(label_3.shape))
#print(label_3.shape)
label = np.zeros(label_3.shape[0:2])
if(3==len(label_3.shape)):
label = label_3[:,:,0]
elif(2==len(label_3.shape)):
label = label_3
if(3==len(image.shape) and 2==len(label.shape)):
label = label[:,:,np.newaxis]
elif(2==len(image.shape) and 2==len(label.shape)):
image = image[:,:,np.newaxis]
label = label[:,:,np.newaxis]
# #vertical flipping
# # fliph = np.random.randn(1)
# flipv = np.random.randn(1)
#
# if flipv>0:
# image = image[::-1,:,:]
# label = label[::-1,:,:]
# #vertical flip
sample = {'image':image, 'label':label}
if self.transform:
sample = self.transform(sample)
return sample