forked from lvsn/deeptracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_frame_resize.py
33 lines (30 loc) · 1.22 KB
/
dataset_frame_resize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
"""
Resize all frames of a dataset
"""
from deeptracking.data.dataset import Dataset
import sys
import cv2
import os
if __name__ == '__main__':
folder = "/home/mathieu/Dataset/DeepTrack/dragon/"
dataset_path = os.path.join(folder, "train_raw_real")
new_dataset_path = os.path.join(folder, "train_raw_real_resized")
if not os.path.exists(new_dataset_path):
os.mkdir(new_dataset_path)
dataset = Dataset(dataset_path)
if not dataset.load():
print("[Error]: Train dataset empty")
sys.exit(-1)
new_dataset = Dataset(new_dataset_path)
new_dataset.camera = dataset.camera.copy()
new_dataset.camera.set_ratio(2)
for i in range(dataset.size()):
rgb, depth, pose = dataset.load_image(i)
new_rgb = cv2.resize(rgb, (new_dataset.camera.width, new_dataset.camera.height))
new_depth = cv2.resize(depth, (new_dataset.camera.width, new_dataset.camera.height))
new_dataset.add_pose(new_rgb, new_depth, pose)
if i % (1*dataset.size()/100) == 0:
print("Progress : {}%".format(i*100/dataset.size()))
new_dataset.set_save_type(dataset.metadata["save_type"])
new_dataset.dump_images_on_disk()
new_dataset.save_json_files(dataset.metadata)