forked from mathilde173/MAFnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
191 lines (152 loc) · 7.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright 2020 UMONS-Numediart-USHERBROOKE-Necotis.
#
# MAFNet of University of Mons and University of Sherbrooke – Mathilde Brousmiche is free software : you can redistribute it
# and/or modify it under the terms of the Lesser GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or any later version. This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the Lesser GNU General Public License for more details.
# You should have received a copy of the Lesser GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>.
# Each use of this software must be attributed to University of MONS – Numédiart Institute and to University of SHERBROOKE - Necotis Lab (Mathilde Brousmiche).
import tensorflow as tf
import os
import sklearn
import pickle
import numpy as np
import argparse
import model
parser = argparse.ArgumentParser(description='AVE')
# Data specifications
parser.add_argument('--data_path', type=str, default="data",
help='data path')
parser.add_argument('--n_epoch', type=int, default=300,
help='number of epoch')
parser.add_argument('--batch_size', type=int, default=32,
help='number of batch size')
parser.add_argument('--learning_rate', type=float, default=1E-4,
help='number of batch size')
parser.add_argument('--patience', type=int, default=50,
help='patience for early stopping')
parser.add_argument('--x_image_shape', type=int, default=1920,
help='image feature size')
parser.add_argument('--x_sound_shape', type=int, default=512,
help='sound feature size')
parser.add_argument('--n_classes', type=int, default=28,
help='number of classes')
parser.add_argument('--n_hidden', type=int, default=512,
help='number of hidden neurons')
parser.add_argument('--prob_img', type=float, default=0.,
help='rate for updating weights from image pathway')
parser.add_argument('--prob_all', type=float, default=.9,
help='rate for updating weights from both pathways')
parser.add_argument('--train', action='store_true', default=False,
help='train a new model')
args = parser.parse_args()
def load_data(path, set, shuffle=True):
print('Load data ' + set + 'set')
pkl_file = open(os.path.join(path, set+'Set_visual.p'), 'rb')
visual = pickle.load(pkl_file)
visual = np.asarray(visual)
pkl_file = open(os.path.join(path, set + 'Set_audio.p'), 'rb')
audio = pickle.load(pkl_file)
audio = np.asarray(audio)
pkl_file = open(os.path.join(path, set + 'Set_target.p'), 'rb')
target = pickle.load(pkl_file)
target = np.asarray(target)
if shuffle:
visual, audio, target = sklearn.utils.shuffle(visual, audio, target)
return visual, audio, target
def train_model(train_data, val_data):
print('Training ...')
# Data Generator
x_image = tf.placeholder(tf.float32, shape=(None, 10, args.x_image_shape), name='x_image')
x_sound = tf.placeholder(tf.float32, shape=(None, 10, 12, 8, args.x_sound_shape), name='x_sound')
y = tf.placeholder(tf.float32, shape=(None, args.n_classes), name='target')
config_tf = tf.ConfigProto()
config_tf.gpu_options.allow_growth = True
sess = tf.Session(config=config_tf)
# setup network
MAFnet = model.MAFnet(x_image, x_sound, y, args.x_image_shape, args.x_sound_shape, args.n_hidden, args.n_classes)
var_list_image = []
var_list_sound = []
for var in tf.trainable_variables():
if 'image' in var.name:
var_list_image.append(var)
if 'sound' in var.name:
var_list_sound.append(var)
if (not 'image' in var.name) and not ('sound' in var.name):
var_list_image.append(var)
var_list_sound.append(var)
train_step = tf.train.AdamOptimizer(args.learning_rate).minimize(MAFnet.loss)
train_step_image = tf.train.AdamOptimizer(args.learning_rate).minimize(MAFnet.loss, var_list=var_list_image)
train_step_sound = tf.train.AdamOptimizer(args.learning_rate).minimize(MAFnet.loss, var_list=var_list_sound)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
# Train initialization
min_delta = 0.0001
patience_cnt = 0
best_acc_val = 0
best_epoch = 0
N = len(train_data[0])
for n in range(args.n_epoch):
total_loss = 0
train_data = sklearn.utils.shuffle(train_data[0], train_data[1], train_data[2])
for i in range(int(N / args.batch_size)):
random_choice = np.random.choice(['image', 'sound', 'all'], size=int(N / args.batch_size),
p=[args.prob_img, 1 - args.prob_img - args.prob_all, args.prob_all])
feed_dict = {x_image: train_data[0][i*args.batch_size:(i+1)*args.batch_size],
x_sound: train_data[1][i*args.batch_size:(i+1)*args.batch_size],
y: train_data[2][i*args.batch_size:(i+1)*args.batch_size],
MAFnet.isTraining: True}
if random_choice[i] == 'image':
_, l = sess.run([train_step_image, MAFnet.loss], feed_dict=feed_dict)
elif random_choice[i] == 'sound':
_, l = sess.run([train_step_sound, MAFnet.loss], feed_dict=feed_dict)
elif random_choice[i] == 'all':
_, l = sess.run([train_step, MAFnet.loss], feed_dict=feed_dict)
total_loss += l
acc_val = sess.run(MAFnet.acc, feed_dict={ x_image: val_data[0],
x_sound: val_data[1],
y: val_data[2],
MAFnet.isTraining: False})
# Early stopping
if n > 0 and (acc_val - best_acc_val) > min_delta:
patience_cnt = 0
best_acc_val = acc_val
best_epoch = n
saver.save(sess, os.path.join('model', 'MAFnet'))
else:
patience_cnt += 1
print('>> Epoch [{}/{}] : Accuracy val {:.2f} Best epoch : {}'.format(n + 1, args.n_epoch,
acc_val * 100, best_epoch+1))
if patience_cnt > args.patience:
print("Early stopping...")
print("Best epoch : " + str(best_epoch+1))
break
return
def test_model(test_data):
print('Testing ...')
# Data Generator
x_image = tf.placeholder(tf.float32, shape=(None, 10, args.x_image_shape), name='x_image')
x_sound = tf.placeholder(tf.float32, shape=(None, 10, 12, 8, args.x_sound_shape), name='x_sound')
y = tf.placeholder(tf.float32, shape=(None, args.n_classes), name='target')
config_tf = tf.ConfigProto()
config_tf.gpu_options.allow_growth = True
sess = tf.Session(config=config_tf)
# setup network
MAFnet = model.MAFnet(x_image, x_sound, y, args.x_image_shape, args.x_sound_shape, args.n_hidden, args.n_classes)
saver = tf.train.Saver()
saver.restore(sess, os.path.join('model', 'MAFnet'))
accuracy = sess.run(MAFnet.acc, feed_dict={x_image: test_data[0],
x_sound: test_data[1],
y: test_data[2],
MAFnet.isTraining: False})
print('Accuracy : {}'.format(accuracy))
return
if __name__=='__main__':
if args.train == True:
train_data = load_data(args.data_path, set='train')
val_data = load_data(args.data_path, set='val')
train_model(train_data, val_data)
else:
test_data = load_data(args.data_path, set='test', shuffle=False)
test_model(test_data)