forked from WongKinYiu/yolor
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdemo.py
83 lines (66 loc) · 2.65 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import cv2
import torch
import numpy as np
from numpy import random
from utils.datasets import letterbox
from utils.general import non_max_suppression, scale_coords
from utils.plots import plot_one_box
from models.models import Darknet
def load_classes(path):
# Loads *.names file at 'path'
with open(path, 'r') as f:
names = f.read().split('\n')
return list(filter(None, names)) # filter removes empty strings (such as last line)
def detect(bgr_img, model_cfg = 'cfg/yolor_csp_x.cfg', model_weights = 'yolor_csp_x_star.pt', imgsz = (896, 896), fp16 = True, device = 'cuda:1', names = 'data/coco.names'):
# Initialize
device = torch.device(device)
# Get names and colors
names = load_classes(names)
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Load model
model = Darknet(model_cfg, imgsz).cuda()
model.load_state_dict(torch.load(model_weights, map_location=device)['model'])
model.to(device).eval()
if fp16:
model.half() # to FP16
# Prediction
## Padded resize
inp = letterbox(bgr_img, new_shape=imgsz, auto_size=64)[0]
inp = inp[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
inp = np.ascontiguousarray(inp)
## Convert to torch
with torch.no_grad():
inp = torch.from_numpy(inp).to(device)
inp = inp.half() if fp16 else inp.float() # uint8 to fp16/32
inp /= 255.0 # 0 - 255 to 0.0 - 1.0
if inp.ndimension() == 3:
inp = inp.unsqueeze(0)
## Inference
t1 = time.time()
pred = model(inp, augment=False)[0]
t2 = time.time()
## Apply NMS
pred = non_max_suppression(pred, conf_thres=0.5, iou_thres=0.6)
t3 = time.time()
print('Inference: {}'.format(t2-t1))
print('NMS: {}'.format(t3-t2))
# Process detections
visualize_img = bgr_img.copy()
for i, det in enumerate(pred): # detections per image
gn = torch.tensor(bgr_img.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(inp.shape[2:], det[:, :4], bgr_img.shape).round()
for *xyxy, conf, cls in det:
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, visualize_img, label=label, color=colors[int(cls)], line_thickness=3)
cv2.imwrite('result.jpg', visualize_img)
if __name__ == '__main__':
img = cv2.imread('img.png')
detect(img)