forked from WongKinYiu/yolor
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathobject_detector_onnx.py
85 lines (73 loc) · 2.8 KB
/
object_detector_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import cv2
import torch
import numpy as np
from numpy import random
from utils.datasets import letterbox
from utils.general import non_max_suppression, scale_coords
from utils.plots import plot_one_box
import onnxruntime as rt
# from models.models import Darknet
def load_classes(path):
# Loads *.names file at 'path'
with open(path, 'r') as f:
names = f.read().split('\n')
return list(filter(None, names)) # filter removes empty strings (such as last line)
class YOLOR(object):
def __init__(self,
model_weights = 'yolor_csp_x_star.onnx',
imgsz = (1920, 1920),
names = 'data/coco.names'):
self.names = load_classes(names)
self.colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(self.names))]
self.imgsz = imgsz
# Load model
self.model = rt.InferenceSession(model_weights)
def detect(self, bgr_img, threshold = 0.4):
# Prediction
## Padded resize
inp = letterbox(bgr_img, new_shape=self.imgsz, auto_size=64)[0]
# print(inp.shape)
# inp = cv2.resize(bgr_img, self.imgsz)
inp = inp[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB
inp = inp.astype('float32') / 255.0 # 0 - 255 to 0.0 - 1.0
inp = np.expand_dims(inp, 0)
# inp = np.transpose(inp, (0, 3, 1, 2))
print(inp.shape)
## Convert to torch
## Inference
t1 = time.time()
ort_inputs = {self.model.get_inputs()[0].name: inp}
pred = self.model.run(None, ort_inputs)[0]
t2 = time.time()
## Apply NMS
with torch.no_grad():
pred = non_max_suppression(torch.tensor(pred), conf_thres=threshold, iou_thres=0.6)
t3 = time.time()
print('Inference: {}'.format(t2-t1))
print('NMS: {}'.format(t3-t2))
# Process detections
visualize_img = bgr_img.copy()
det = pred[0] # detections per image
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
_, _, height, width = inp.shape
h, w, _ = bgr_img.shape
det[:, 0] *= w/width
det[:, 1] *= h/height
det[:, 2] *= w/width
det[:, 3] *= h/height
for x1, y1, x2, y2, conf, cls in det: # x1, y1, x2, y2 in pixel format
label = '%s %.2f' % (self.names[int(cls)], conf)
plot_one_box((x1, y1, x2, y2), visualize_img, label=label, color=self.colors[int(cls)], line_thickness=3)
cv2.imwrite('result.jpg', visualize_img)
return visualize_img
if __name__ == '__main__':
model = YOLOR()
img = cv2.imread('test_images/img.png')
model.detect(img)