diff --git a/n3fit/src/n3fit/hyper_optimization/rewards.py b/n3fit/src/n3fit/hyper_optimization/rewards.py index fd9a0d965f..ae49a4559c 100644 --- a/n3fit/src/n3fit/hyper_optimization/rewards.py +++ b/n3fit/src/n3fit/hyper_optimization/rewards.py @@ -62,7 +62,7 @@ def _average_best(fold_losses: np.ndarray, percentage: float = 0.9, axis: int = ------- float: The average along the specified axis. """ - num_best = int(np.ceil(percentage * len(sorted_losses))) + num_best = int(np.ceil(percentage * len(fold_losses))) if np.isnan(fold_losses).any(): log.warning(f"{np.isnan(fold_losses).sum()} replicas have NaNs losses")