From ee35538b9970a43ab3f8fb28d7c86068e034fa1e Mon Sep 17 00:00:00 2001 From: juacrumar Date: Wed, 27 Nov 2024 16:47:42 +0100 Subject: [PATCH] apply some comments, refactor operations remove other instances of kops --- .../n3fit/backends/keras_backend/MetaModel.py | 20 +-- .../backends/keras_backend/constraints.py | 7 +- .../backends/keras_backend/operations.py | 158 ++++-------------- n3fit/src/n3fit/layers/mask.py | 11 +- n3fit/src/n3fit/tests/test_backend.py | 4 - 5 files changed, 48 insertions(+), 152 deletions(-) diff --git a/n3fit/src/n3fit/backends/keras_backend/MetaModel.py b/n3fit/src/n3fit/backends/keras_backend/MetaModel.py index ddd010b89a..b74693cfc4 100644 --- a/n3fit/src/n3fit/backends/keras_backend/MetaModel.py +++ b/n3fit/src/n3fit/backends/keras_backend/MetaModel.py @@ -9,13 +9,11 @@ import re from keras import Variable -from keras import backend as K -from keras import ops as Kops from keras import optimizers as Kopt from keras.models import Model import numpy as np -import n3fit.backends.keras_backend.operations as op +from . import operations as ops # Define in this dictionary new optimizers as well as the arguments they accept # (with default values if needed be) @@ -42,7 +40,7 @@ def _default_loss(y_true, y_pred): # pylint: disable=unused-argument """Default loss to be used when the model is compiled with loss = Null (for instance if the prediction of the model is already the loss""" - return op.sum(y_pred) + return ops.sum(y_pred) class MetaModel(Model): @@ -95,7 +93,7 @@ def __init__(self, input_tensors, output_tensors, scaler=None, input_values=None if k in input_values: x_in[k] = input_values[k] elif hasattr(v, "tensor_content"): - x_in[k] = op.numpy_to_tensor(v.tensor_content) + x_in[k] = ops.numpy_to_tensor(v.tensor_content) else: self.required_slots.add(k) super().__init__(input_tensors, output_tensors, **kwargs) @@ -160,8 +158,8 @@ def perform_fit(self, x=None, y=None, epochs=1, **kwargs): steps_per_epoch = self._determine_steps_per_epoch(epochs) for k, v in x_params.items(): - x_params[k] = Kops.repeat(v, steps_per_epoch, axis=0) - y = [Kops.repeat(yi, steps_per_epoch, axis=0) for yi in y] + x_params[k] = ops.repeat(v, steps_per_epoch, axis=0) + y = [ops.repeat(yi, steps_per_epoch, axis=0) for yi in y] history = super().fit( x=x_params, y=y, epochs=epochs // steps_per_epoch, batch_size=1, **kwargs @@ -215,13 +213,13 @@ def compute_losses(self): inputs[k] = v[:1] # Compile a evaluation function - @op.decorator_compiler + @ops.decorator_compiler def losses_fun(): predictions = self(inputs) # If we only have one dataset the output changes if len(out_names) == 2: predictions = [predictions] - total_loss = Kops.sum(predictions, axis=0) + total_loss = ops.sum(predictions, axis=0) ret = [total_loss] + predictions return dict(zip(out_names, ret)) @@ -231,7 +229,7 @@ def losses_fun(): # The output of this function is to be used by python (and numpy) # so we need to convert the tensors - return op.dict_to_numpy_or_python(ret) + return ops.dict_to_numpy_or_python(ret) def compile( self, @@ -292,7 +290,7 @@ def compile( # If given target output is None, target_output is unnecesary, save just a zero per output if target_output is None: - self.target_tensors = [op.numpy_to_tensor(np.zeros((1, 1))) for _ in self.output_shape] + self.target_tensors = [ops.numpy_to_tensor(np.zeros((1, 1))) for _ in self.output_shape] else: if not isinstance(target_output, list): target_output = [target_output] diff --git a/n3fit/src/n3fit/backends/keras_backend/constraints.py b/n3fit/src/n3fit/backends/keras_backend/constraints.py index bb6d85ff4b..7ac874e0d8 100644 --- a/n3fit/src/n3fit/backends/keras_backend/constraints.py +++ b/n3fit/src/n3fit/backends/keras_backend/constraints.py @@ -3,9 +3,10 @@ """ from keras import backend as K -from keras import ops as Kops from keras.constraints import MinMaxNorm +from . import operations as ops + class MinMaxWeight(MinMaxNorm): """ @@ -17,8 +18,8 @@ def __init__(self, min_value, max_value, **kwargs): super().__init__(min_value=min_value, max_value=max_value, axis=1, **kwargs) def __call__(self, w): - norms = Kops.sum(w, axis=self.axis, keepdims=True) + norms = ops.sum(w, axis=self.axis, keepdims=True) desired = ( - self.rate * Kops.clip(norms, self.min_value, self.max_value) + (1 - self.rate) * norms + self.rate * ops.clip(norms, self.min_value, self.max_value) + (1 - self.rate) * norms ) return w * desired / (K.epsilon() + norms) diff --git a/n3fit/src/n3fit/backends/keras_backend/operations.py b/n3fit/src/n3fit/backends/keras_backend/operations.py index 3f5f9c5736..23d412c171 100644 --- a/n3fit/src/n3fit/backends/keras_backend/operations.py +++ b/n3fit/src/n3fit/backends/keras_backend/operations.py @@ -6,8 +6,6 @@ This includes an implementation of the NNPDF operations on fktable in the keras language (with the mapping ``c_to_py_fun``) into Keras ``Lambda`` layers. - Tensor operations are compiled through the decorator for optimization - The rest of the operations in this module are divided into four categories: numpy to tensor: Operations that take a numpy array and return a tensorflow tensor @@ -18,7 +16,12 @@ layer generation: Instanciate a layer to be applied by the calling function - Some of these are just aliases to the backend (tensorflow or Keras) operations + Most of the operations in this module are just aliases to the backend + (Keras in this case) so that, when implementing new backends, it is clear + which operations may needd to be overwritten. + For a few selected operations, a more complicated wrapper to e.g., make + them into layers or apply some default, is included. + Note that tensor operations can also be applied to layers as the output of a layer is a tensor equally operations are automatically converted to layers when used as such. """ @@ -27,12 +30,37 @@ from keras import ops as Kops from keras.layers import ELU, Input from keras.layers import Lambda as keras_Lambda -from keras.layers import multiply as keras_multiply -from keras.layers import subtract as keras_subtract import numpy as np from validphys.convolution import OP +# The following operations are either loaded directly from keras and exposed here +# or the name is change slightly (usually for historical or collision reasons, +# e.g., our logs are always logs or we were using the tf version in the past) + +# isort: off +from keras.ops import ( + absolute, + clip, + einsum, + expand_dims, + leaky_relu, + reshape, + repeat, + split, + sum, + tanh, + transpose, +) +from keras.ops import log as op_log +from keras.ops import power as pow +from keras.ops import take as gather +from keras.ops import tensordot as tensor_product +from keras.layers import multiply as op_multiply +from keras.layers import subtract as op_subtract + +# isort: on + # Backend dependent functions and operations if K.backend() == "torch": tensor_to_numpy_or_python = lambda x: x.detach().cpu().numpy() @@ -144,40 +172,6 @@ def numpy_to_input(numpy_array, name=None): return input_layer -# -# Layer to Layer operations -# -def op_multiply(o_list, **kwargs): - """ - Receives a list of layers of the same output size and multiply them element-wise - """ - return keras_multiply(o_list, **kwargs) - - -def op_multiply_dim(o_list, **kwargs): - """ - Bypass in order to multiply two layers with different output dimension - for instance: (10000 x 14) * (14) - as the normal keras multiply don't accept it (but somewhow it does accept it doing it like this) - """ - if len(o_list) != 2: - raise ValueError( - "The number of observables is incorrect, operations.py:op_multiply_dim, expected 2, received {}".format( - len(o_list) - ) - ) - - layer_op = as_layer(lambda inputs: inputs[0] * inputs[1]) - return layer_op(o_list) - - -def gather(*args, **kwargs): - """ - Gather elements from a tensor along an axis - """ - return Kops.take(*args, **kwargs) - - def op_gather_keep_dims(tensor, indices, axis=0, **kwargs): """A convoluted way of providing ``x[:, indices, :]`` @@ -195,46 +189,11 @@ def tmp(x): return layer_op(tensor) -# -# Tensor operations -# f(x: tensor[s]) -> y: tensor -# - - -# Generation operations -# generate tensors of given shape/content - - -def tensor_ones_like(*args, **kwargs): - """ - Generates a tensor of ones of the same shape as the input tensor - See full `docs `_ - """ - return K.ones_like(*args, **kwargs) - - -# Property operations -# modify properties of the tensor like the shape or elements it has - - -def reshape(x, shape): - """reshape tensor x""" - return Kops.reshape(x, shape) - - def flatten(x): """Flatten tensor x""" return reshape(x, (-1,)) -def transpose(tensor, **kwargs): - """ - Transpose a layer, - see full `docs `_ - """ - return Kops.transpose(tensor, **kwargs) - - def stack(tensor_list, axis=0, **kwargs): """Stack a list of tensors see full `docs `_ @@ -254,29 +213,6 @@ def concatenate(tensor_list, axis=-1, target_shape=None, name=None): return K.reshape(concatenated_tensor, target_shape) -def einsum(equation, *args, **kwargs): - """ - Computes the tensor product using einsum - See full `docs `_ - """ - return Kops.einsum(equation, *args, **kwargs) - - -def tensor_product(*args, **kwargs): - """ - Computes the tensordot product between tensor_x and tensor_y - See full `docs `_ - """ - return Kops.tensordot(*args, **kwargs) - - -def pow(tensor, power): - """ - Computes the power of the tensor - """ - return Kops.power(tensor, power) - - def scatter_to_one(values, indices, output_shape): """ Like scatter_nd initialized to one instead of zero @@ -286,14 +222,6 @@ def scatter_to_one(values, indices, output_shape): return Kops.scatter_update(ones, indices, values) -def op_subtract(inputs, **kwargs): - """ - Computes the difference between two tensors. - see full `docs `_ - """ - return keras_subtract(inputs, **kwargs) - - def swapaxes(tensor, source, destination): """ Moves the axis of the tensor from source to destination, as in numpy.swapaxes. @@ -316,15 +244,6 @@ def elu(x, alpha=1.0, **kwargs): return new_layer(x) -def backend_function(fun_name, *args, **kwargs): - """ - Wrapper to call non-explicitly implemented backend functions by name: (``fun_name``) - see full `docs `_ for some possibilities - """ - fun = getattr(K, fun_name) - return fun(*args, **kwargs) - - def tensor_splitter(ishape, split_sizes, axis=2, name="splitter"): """ Generates a Lambda layer to apply the split operation to a given tensor shape. @@ -371,14 +290,3 @@ def tensor_splitter(ishape, split_sizes, axis=2, name="splitter"): lambda x: Kops.split(x, indices, axis=axis), output_shape=oshapes, name=name ) return sp_layer - - -expand_dims = Kops.expand_dims -absolute = Kops.absolute -tanh = Kops.tanh -leaky_relu = Kops.leaky_relu -split = Kops.split -gather = Kops.take -take = Kops.take -sum = Kops.sum -op_log = Kops.log diff --git a/n3fit/src/n3fit/layers/mask.py b/n3fit/src/n3fit/layers/mask.py index 089c0b6ba6..d89a8942af 100644 --- a/n3fit/src/n3fit/layers/mask.py +++ b/n3fit/src/n3fit/layers/mask.py @@ -47,14 +47,7 @@ def build(self, input_shape): indices = np.where(self._raw_mask) # The batch dimension can be ignored nreps = self.mask.shape[-2] - dims = (nreps, self.last_dim * nreps) - try: - self._flattened_indices = np.ravel_multi_index(indices, self._raw_mask.shape) - except: - import ipdb - - ipdb.set_trace() - + self._flattened_indices = np.ravel_multi_index(indices, self._raw_mask.shape) self.masked_output_shape = [-1 if d is None else d for d in input_shape] self.masked_output_shape[-1] = self.last_dim self.masked_output_shape[-2] = nreps @@ -73,7 +66,7 @@ def call(self, ret): Tensor of shape (batch_size, n_replicas, n_features) """ if self.mask is not None: - ret = op.take(op.flatten(ret), self._flattened_indices) + ret = op.gather(op.flatten(ret), self._flattened_indices) ret = op.reshape(ret, self.masked_output_shape) if self.c is not None: ret = ret * self.kernel diff --git a/n3fit/src/n3fit/tests/test_backend.py b/n3fit/src/n3fit/tests/test_backend.py index e464ae2384..9e434eaf8b 100644 --- a/n3fit/src/n3fit/tests/test_backend.py +++ b/n3fit/src/n3fit/tests/test_backend.py @@ -137,10 +137,6 @@ def test_op_multiply(): numpy_check(op.op_multiply, operator.mul) -def test_op_multiply_dim(): - numpy_check(op.op_multiply_dim, operator.mul, mode="diff") - - def test_op_log(): numpy_check(op.op_log, np.log, mode='single')