diff --git a/src/pineko/scale_variations.py b/src/pineko/scale_variations.py index adea5518..c355b346 100644 --- a/src/pineko/scale_variations.py +++ b/src/pineko/scale_variations.py @@ -51,16 +51,32 @@ def ren_sv_coeffs(m, max_as, logpart, which_part, nf): float renormalization scale variation contribution """ - bcoeff = beta.beta_qcd((max_as - logpart - which_part + 2, 0), nf) - as_normalization = AS_NORM ** (max_as - which_part) + # nothing to do? if max_as == 0: return 0.0 - if max_as == 2: - if which_part > 0: - m += 1 - elif logpart > 1: - m = 0.5 * m * (m + 1) - return m * as_normalization * bcoeff + # eko uses as = alpha_s/(4pi), but pineappl just alpha_s + as_normalization = AS_NORM ** (max_as - which_part) + # the coefficients can be found in the NNLO MHOU paper + # (which also contains a generating MMa script) + beta0 = beta.beta_qcd_as2(nf) + beta1 = beta.beta_qcd_as3(nf) + beta2 = beta.beta_qcd_as4(nf) + ren_coeffs = { + # NLO + (1, 1, 0): m * beta0, + # NNLO + (2, 1, 1): (m + 1) * beta0, + (2, 1, 0): (m + 0) * beta1, + (2, 2, 0): m * (m + 1) / 2.0 * beta0**2, + # N3LO + (3, 1, 2): (m + 2) * beta0, + (3, 1, 1): (m + 1) * beta1, + (3, 1, 0): (m + 0) * beta2, + (3, 2, 1): (m + 1) * (m + 2) / 2.0 * beta0**2, + (3, 2, 0): m * (2 * m + 3) / 2.0 * beta0 * beta1, + (3, 3, 0): m * (m + 1) * (m + 2) / 6 * beta0**2, + } + return as_normalization * ren_coeffs[(max_as, logpart, which_part)] def requirements(m: int, max_as: int, al: int) -> Dict[OrderTuple, List[OrderTuple]]: