-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsmiles_nn.py
250 lines (198 loc) · 8.88 KB
/
smiles_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from dl_util import *
from ml_util import *
embedding_vector_length, max_length, vocab_size = 32, 83, 23
def CNN_GRU_model(X,Y, dropout=0, epochs=10, batch_size=32):
"""
Module that creates a 1-D CNN followed by GRU for property prediction from SMILES
"""
model = Sequential()
model.add(Embedding(max_length, embedding_vector_length, input_length=max_length))
model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(GRU(100, dropout=dropout))
model.add(Dense(1))
model.compile(loss='mse',optimizer='adam',metrics=['mape'])
model.summary()
history = model.fit(X, Y, validation_split=0.1, epochs=epochs, batch_size=batch_size, shuffle=True, verbose=1)
save_model("cnn_gru", model, history, dropout, epochs, batch_size)
return model
def CNN_LSTM_model(X,Y, dropout=0, epochs=10, batch_size=32):
"""
Module that creates a 1-D CNN followed by LSTM for property prediction from SMILES
"""
model = Sequential()
model.add(Embedding(max_length, embedding_vector_length, input_length=max_length))
model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(LSTM(100, dropout=dropout))
model.add(Dense(1))
model.compile(loss='mse',optimizer='adam',metrics=['mape'])
model.summary()
print(X[-1], Y[-1])
print(X[-100], Y[-100])
history = model.fit(X, Y, validation_split=0.1, epochs=epochs, batch_size=batch_size, shuffle=True, verbose=1)
save_model("cnn_lstm", model, history, dropout, epochs, batch_size)
return model
# model = Sequential()
# model.add(Embedding(max_length, embedding_vector_length, input_length=max_length))
# model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
# model.add(MaxPooling1D(pool_size=2))
# if gate == "lstm":
# model.add(LSTM(num_gated_connections, dropout=dropout))
# else:#gate="gru"
# model.add(GRU(num_gated_connections, dropout=dropout))
# model.add(Dense(1))
#
# if optimizer == "adam" and lr!= 0.001:
# print("Setting learning rate to"+str(lr))
# optimizer = tf.train.AdamOptimizer(lr)
#
# model.compile(loss='mse',optimizer=optimizer,metrics=['mape'])
# model.summary()
# return model
#history = model.fit(X1_train, y_train, shuffle=True, validation_split=0.2, \
#epochs=epochs, batch_size=batch_size, verbose=1, callbacks=[early_stop])
def GRU2_model(X,Y, dropout=0, epochs=10, batch_size=32):
"""
Module that creates a 2 layer GRU for property prediction from SMILES
"""
model = Sequential()
model.add(Embedding(max_length, embedding_vector_length, input_length=max_length))
model.add(GRU(100, return_sequences=True, dropout=dropout))
model.add(GRU(100, dropout=dropout))
model.add(Dense(1))
model.compile(loss='mse',optimizer='adam',metrics=['mape'])
model.summary()
history = model.fit(X, Y, validation_split=0.1, epochs=epochs, batch_size=batch_size, shuffle=True, verbose=1)
save_model("gru_2layer", model, history, dropout, epochs, batch_size)
return model
def LSTM2_model(X,Y, dropout=0, epochs=10, batch_size=32):
"""
Module that creates a 2 layer LSTM for property prediction from SMILES
"""
model = Sequential()
model.add(Embedding(max_length, embedding_vector_length, input_length=max_length))
model.add(LSTM(100, return_sequences=True, dropout=dropout))
model.add(LSTM(100, dropout=dropout))
model.add(Dense(1))
model.compile(loss='mse',optimizer='adam',metrics=['mape'])
model.summary()
history = model.fit(X, Y, validation_split=0.1, epochs=epochs, batch_size=batch_size, shuffle=True, verbose=1)
save_model("lstm_2layer", model, history, dropout, epochs, batch_size)
return model
def GRU_model(X,Y, dropout=0, epochs=10, batch_size=32):
"""
Module that creates a 1 layer GRU for property prediction from SMILES
"""
model = Sequential()
model.add(Embedding(max_length, embedding_vector_length, input_length=max_length))
model.add(GRU(100, dropout=dropout))
model.add(Dense(1))
model.compile(loss='mse',optimizer='adam',metrics=['mape'])
model.summary()
history = model.fit(X, Y, validation_split=0.1, epochs=epochs, batch_size=batch_size, shuffle=True, verbose=1)
save_model("gru_1layer", model, history, dropout, epochs, batch_size)
return model
def LSTM_model(X,Y, dropout=0, epochs=10, batch_size=32):
"""
Module that creates a 1 layer LSTM for property prediction from SMILES
"""
model = Sequential()
model.add(Embedding(max_length, embedding_vector_length, input_length=max_length))
model.add(LSTM(100, dropout=dropout))
model.add(Dense(1))
model.compile(loss='mse',optimizer='adam',metrics=['mape'])
model.summary()
history = model.fit(X, Y, validation_split=0.1, epochs=epochs, batch_size=batch_size, shuffle=True, verbose=1)
save_model("lstm_1layer", model, history, dropout, epochs, batch_size)
return model
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", help= "which model to train", required=True)
parser.add_argument("-d", "--dropout", help= "amount of dropout", required=False)
parser.add_argument("-s", "--size", help= "percentage of dataset to use", required=False)
parser.add_argument("-l", "--layers", help= "number of layers", required=False)
parser.add_argument("-e", "--epochs", help= "epochs", required=False)
parser.add_argument("-b", "--batch_size", help= "size of batch", required=False)
#parser.add_argument("-r", "--learning_rate", help= "learning rate", required=False)
args = parser.parse_args()
if args.dropout:
dropout = float(args.dropout)
else:
dropout =0
if args.epochs:
epochs = int(args.epochs)
else:
epochs = 10
if args.batch_size:
batch_size = int(args.batch_size)
else:
batch_size = 32
# if args.learning_rate:
# learning_rate = float(args.learning_rate)
# else:
# learning_rate = 0.001
start = time.time()
#SMILES = loadData("SMILES_1_7")
smiles_sequences = loadNumpy('SMILES_1_7_sequences')
HOMO = loadNumpy('HOMO_1_7')
print("Loaded Data...")
if args.size:
size = float(args.size)
num_records = int(size*len(HOMO))
X = smiles_sequences[:num_records]
Y = HOMO[:num_records]
else:
size = 1
X = smiles_sequences
Y = HOMO
# print(X[0],Y[0])
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, random_state=1024)
# print(X_train[0],Y_train[0])
## Assigning the architecture based on arguments
model_type = args.model
if model_type =="lstm":
layers = args.layers
if not layers or int(layers) == 2:
model = LSTM2_model(X_train, Y_train, dropout, epochs, batch_size)
model_type = "lstm_2layer"
else:##layers = 1
model = LSTM_model(X_train, Y_train, dropout, epochs, batch_size)
model_type = "lstm_1layer"
elif model_type =="gru":
layers = args.layers
if not layers or int(layers) == 2:
model = GRU2_model(X_train, Y_train, dropout, epochs, batch_size)
model_type = "gru_2layer"
else:
model = GRU_model(X_train, Y_train, dropout, epochs, batch_size)
model_type = "gru_1layer"
elif model_type =="cnn_lstm":
model = CNN_LSTM_model(X_train, Y_train, dropout, epochs, batch_size)
elif model_type =="cnn_gru":
model = CNN_GRU_model(X_train, Y_train, dropout, epochs, batch_size)
else:
print("MODEL TYPE UNDEFINED")
exit(4)
[loss, mape] = model.evaluate(X_test, Y_test, verbose=0)
Y_predict = model.predict(X_test)
r2 = r2_score(Y_test,Y_predict)
mean_squared_err = mse(Y_test,Y_predict)
mean_absolute_err = mae(Y_test, Y_predict)
print("Testing set Mean Abs percentage Error: {:2.4f}".format(mape ))
print("Testing set Mean Abs Error: {:2.4f}".format(mean_absolute_err))
print("Testing set Mean R2: {:2.4f}".format(r2 ))
print("Testing set Mean Squared Error: {:2.4f}".format(mean_squared_err))
stats = {"mape":mape, "mae":mean_absolute_err, "mse":mean_squared_err, "r2":r2}
file_suffix = "_"+model_type+"_dropout_"+str(dropout)+"_epochs_"+str(epochs)+"_batch_"+str(batch_size)
stats_file = "stats"+file_suffix
saveData(stats,stats_file,"model")
print("Stats saved in", stats_file+".pkl")
time_elapsed = str(time.time()-start)
subject = "smiles2vec_"+model_type+"_dropout_"+str(dropout)+"_epochs_"+str(epochs)+"_"+str(batch_size)
message = prepare_message(model_type, stats, dropout, epochs, batch_size, time_elapsed, size)
try:
send_email(subject, message)
except:
print("Unable to send email")