-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
214 lines (186 loc) · 25.7 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import os
import re
import sys
from collections import defaultdict
import numpy
import pandas
import sklearn.preprocessing
#from matminer.featurizers.base import MultipleFeaturizer
from sklearn.model_selection import train_test_split
formulare = re.compile(r'([A-Z][a-z]*)(\d*\.*\d*)')
elements = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K',
'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb',
'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs',
'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta',
'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa',
'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt',
'Ds', 'Rg', 'Cn']
elements_tl = ['H', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'K',
'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se',
'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In',
'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd',
'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au',
'Hg', 'Tl', 'Pb', 'Bi', 'Ac','Th', 'Pa', 'U', 'Np', 'Pu']
input1024 = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294', '295', '296', '297', '298', '299', '300', '301', '302', '303', '304', '305', '306', '307', '308', '309', '310', '311', '312', '313', '314', '315', '316', '317', '318', '319', '320', '321', '322', '323', '324', '325', '326', '327', '328', '329', '330', '331', '332', '333', '334', '335', '336', '337', '338', '339', '340', '341', '342', '343', '344', '345', '346', '347', '348', '349', '350', '351', '352', '353', '354', '355', '356', '357', '358', '359', '360', '361', '362', '363', '364', '365', '366', '367', '368', '369', '370', '371', '372', '373', '374', '375', '376', '377', '378', '379', '380', '381', '382', '383', '384', '385', '386', '387', '388', '389', '390', '391', '392', '393', '394', '395', '396', '397', '398', '399', '400', '401', '402', '403', '404', '405', '406', '407', '408', '409', '410', '411', '412', '413', '414', '415', '416', '417', '418', '419', '420', '421', '422', '423', '424', '425', '426', '427', '428', '429', '430', '431', '432', '433', '434', '435', '436', '437', '438', '439', '440', '441', '442', '443', '444', '445', '446', '447', '448', '449', '450', '451', '452', '453', '454', '455', '456', '457', '458', '459', '460', '461', '462', '463', '464', '465', '466', '467', '468', '469', '470', '471', '472', '473', '474', '475', '476', '477', '478', '479', '480', '481', '482', '483', '484', '485', '486', '487', '488', '489', '490', '491', '492', '493', '494', '495', '496', '497', '498', '499', '500', '501', '502', '503', '504', '505', '506', '507', '508', '509', '510', '511', '512', '513', '514', '515', '516', '517', '518', '519', '520', '521', '522', '523', '524', '525', '526', '527', '528', '529', '530', '531', '532', '533', '534', '535', '536', '537', '538', '539', '540', '541', '542', '543', '544', '545', '546', '547', '548', '549', '550', '551', '552', '553', '554', '555', '556', '557', '558', '559', '560', '561', '562', '563', '564', '565', '566', '567', '568', '569', '570', '571', '572', '573', '574', '575', '576', '577', '578', '579', '580', '581', '582', '583', '584', '585', '586', '587', '588', '589', '590', '591', '592', '593', '594', '595', '596', '597', '598', '599', '600', '601', '602', '603', '604', '605', '606', '607', '608', '609', '610', '611', '612', '613', '614', '615', '616', '617', '618', '619', '620', '621', '622', '623', '624', '625', '626', '627', '628', '629', '630', '631', '632', '633', '634', '635', '636', '637', '638', '639', '640', '641', '642', '643', '644', '645', '646', '647', '648', '649', '650', '651', '652', '653', '654', '655', '656', '657', '658', '659', '660', '661', '662', '663', '664', '665', '666', '667', '668', '669', '670', '671', '672', '673', '674', '675', '676', '677', '678', '679', '680', '681', '682', '683', '684', '685', '686', '687', '688', '689', '690', '691', '692', '693', '694', '695', '696', '697', '698', '699', '700', '701', '702', '703', '704', '705', '706', '707', '708', '709', '710', '711', '712', '713', '714', '715', '716', '717', '718', '719', '720', '721', '722', '723', '724', '725', '726', '727', '728', '729', '730', '731', '732', '733', '734', '735', '736', '737', '738', '739', '740', '741', '742', '743', '744', '745', '746', '747', '748', '749', '750', '751', '752', '753', '754', '755', '756', '757', '758', '759', '760', '761', '762', '763', '764', '765', '766', '767', '768', '769', '770', '771', '772', '773', '774', '775', '776', '777', '778', '779', '780', '781', '782', '783', '784', '785', '786', '787', '788', '789', '790', '791', '792', '793', '794', '795', '796', '797', '798', '799', '800', '801', '802', '803', '804', '805', '806', '807', '808', '809', '810', '811', '812', '813', '814', '815', '816', '817', '818', '819', '820', '821', '822', '823', '824', '825', '826', '827', '828', '829', '830', '831', '832', '833', '834', '835', '836', '837', '838', '839', '840', '841', '842', '843', '844', '845', '846', '847', '848', '849', '850', '851', '852', '853', '854', '855', '856', '857', '858', '859', '860', '861', '862', '863', '864', '865', '866', '867', '868', '869', '870', '871', '872', '873', '874', '875', '876', '877', '878', '879', '880', '881', '882', '883', '884', '885', '886', '887', '888', '889', '890', '891', '892', '893', '894', '895', '896', '897', '898', '899', '900', '901', '902', '903', '904', '905', '906', '907', '908', '909', '910', '911', '912', '913', '914', '915', '916', '917', '918', '919', '920', '921', '922', '923', '924', '925', '926', '927', '928', '929', '930', '931', '932', '933', '934', '935', '936', '937', '938', '939', '940', '941', '942', '943', '944', '945', '946', '947', '948', '949', '950', '951', '952', '953', '954', '955', '956', '957', '958', '959', '960', '961', '962', '963', '964', '965', '966', '967', '968', '969', '970', '971', '972', '973', '974', '975', '976', '977', '978', '979', '980', '981', '982', '983', '984', '985', '986', '987', '988', '989', '990', '991', '992', '993', '994', '995', '996', '997', '998', '999', '1000', '1001', '1002', '1003', '1004', '1005', '1006', '1007', '1008', '1009', '1010', '1011', '1012', '1013', '1014', '1015', '1016', '1017', '1018', '1019', '1020', '1021', '1022', '1023']
input512 = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294', '295', '296', '297', '298', '299', '300', '301', '302', '303', '304', '305', '306', '307', '308', '309', '310', '311', '312', '313', '314', '315', '316', '317', '318', '319', '320', '321', '322', '323', '324', '325', '326', '327', '328', '329', '330', '331', '332', '333', '334', '335', '336', '337', '338', '339', '340', '341', '342', '343', '344', '345', '346', '347', '348', '349', '350', '351', '352', '353', '354', '355', '356', '357', '358', '359', '360', '361', '362', '363', '364', '365', '366', '367', '368', '369', '370', '371', '372', '373', '374', '375', '376', '377', '378', '379', '380', '381', '382', '383', '384', '385', '386', '387', '388', '389', '390', '391', '392', '393', '394', '395', '396', '397', '398', '399', '400', '401', '402', '403', '404', '405', '406', '407', '408', '409', '410', '411', '412', '413', '414', '415', '416', '417', '418', '419', '420', '421', '422', '423', '424', '425', '426', '427', '428', '429', '430', '431', '432', '433', '434', '435', '436', '437', '438', '439', '440', '441', '442', '443', '444', '445', '446', '447', '448', '449', '450', '451', '452', '453', '454', '455', '456', '457', '458', '459', '460', '461', '462', '463', '464', '465', '466', '467', '468', '469', '470', '471', '472', '473', '474', '475', '476', '477', '478', '479', '480', '481', '482', '483', '484', '485', '486', '487', '488', '489', '490', '491', '492', '493', '494', '495', '496', '497', '498', '499', '500', '501', '502', '503', '504', '505', '506', '507', '508', '509', '510', '511']
input256 = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255']
input128 = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127']
input64 = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63']
input32 = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31']
phys_atts = ['0-norm', '2-norm', '3-norm', '5-norm', '7-norm', '10-norm', 'MagpieData minimum Number', 'MagpieData maximum Number', 'MagpieData range Number', 'MagpieData mean Number', 'MagpieData avg_dev Number', 'MagpieData mode Number', 'MagpieData minimum MendeleevNumber', 'MagpieData maximum MendeleevNumber', 'MagpieData range MendeleevNumber', 'MagpieData mean MendeleevNumber', 'MagpieData avg_dev MendeleevNumber', 'MagpieData mode MendeleevNumber', 'MagpieData minimum AtomicWeight', 'MagpieData maximum AtomicWeight', 'MagpieData range AtomicWeight', 'MagpieData mean AtomicWeight', 'MagpieData avg_dev AtomicWeight', 'MagpieData mode AtomicWeight', 'MagpieData minimum MeltingT', 'MagpieData maximum MeltingT', 'MagpieData range MeltingT', 'MagpieData mean MeltingT', 'MagpieData avg_dev MeltingT', 'MagpieData mode MeltingT', 'MagpieData minimum Column', 'MagpieData maximum Column', 'MagpieData range Column', 'MagpieData mean Column', 'MagpieData avg_dev Column', 'MagpieData mode Column', 'MagpieData minimum Row', 'MagpieData maximum Row', 'MagpieData range Row', 'MagpieData mean Row', 'MagpieData avg_dev Row', 'MagpieData mode Row', 'MagpieData minimum CovalentRadius', 'MagpieData maximum CovalentRadius', 'MagpieData range CovalentRadius', 'MagpieData mean CovalentRadius', 'MagpieData avg_dev CovalentRadius', 'MagpieData mode CovalentRadius', 'MagpieData minimum Electronegativity', 'MagpieData maximum Electronegativity', 'MagpieData range Electronegativity', 'MagpieData mean Electronegativity', 'MagpieData avg_dev Electronegativity', 'MagpieData mode Electronegativity', 'MagpieData minimum NsValence', 'MagpieData maximum NsValence', 'MagpieData range NsValence', 'MagpieData mean NsValence', 'MagpieData avg_dev NsValence', 'MagpieData mode NsValence', 'MagpieData minimum NpValence', 'MagpieData maximum NpValence', 'MagpieData range NpValence', 'MagpieData mean NpValence', 'MagpieData avg_dev NpValence', 'MagpieData mode NpValence', 'MagpieData minimum NdValence', 'MagpieData maximum NdValence', 'MagpieData range NdValence', 'MagpieData mean NdValence', 'MagpieData avg_dev NdValence', 'MagpieData mode NdValence', 'MagpieData minimum NfValence', 'MagpieData maximum NfValence', 'MagpieData range NfValence', 'MagpieData mean NfValence', 'MagpieData avg_dev NfValence', 'MagpieData mode NfValence', 'MagpieData minimum NValence', 'MagpieData maximum NValence', 'MagpieData range NValence', 'MagpieData mean NValence', 'MagpieData avg_dev NValence', 'MagpieData mode NValence', 'MagpieData minimum NsUnfilled', 'MagpieData maximum NsUnfilled', 'MagpieData range NsUnfilled', 'MagpieData mean NsUnfilled', 'MagpieData avg_dev NsUnfilled', 'MagpieData mode NsUnfilled', 'MagpieData minimum NpUnfilled', 'MagpieData maximum NpUnfilled', 'MagpieData range NpUnfilled', 'MagpieData mean NpUnfilled', 'MagpieData avg_dev NpUnfilled', 'MagpieData mode NpUnfilled', 'MagpieData minimum NdUnfilled', 'MagpieData maximum NdUnfilled', 'MagpieData range NdUnfilled', 'MagpieData mean NdUnfilled', 'MagpieData avg_dev NdUnfilled', 'MagpieData mode NdUnfilled', 'MagpieData minimum NfUnfilled', 'MagpieData maximum NfUnfilled', 'MagpieData range NfUnfilled', 'MagpieData mean NfUnfilled', 'MagpieData avg_dev NfUnfilled', 'MagpieData mode NfUnfilled', 'MagpieData minimum NUnfilled', 'MagpieData maximum NUnfilled', 'MagpieData range NUnfilled', 'MagpieData mean NUnfilled', 'MagpieData avg_dev NUnfilled', 'MagpieData mode NUnfilled', 'MagpieData minimum GSvolume_pa', 'MagpieData maximum GSvolume_pa', 'MagpieData range GSvolume_pa', 'MagpieData mean GSvolume_pa', 'MagpieData avg_dev GSvolume_pa', 'MagpieData mode GSvolume_pa', 'MagpieData minimum GSbandgap', 'MagpieData maximum GSbandgap', 'MagpieData range GSbandgap', 'MagpieData mean GSbandgap', 'MagpieData avg_dev GSbandgap', 'MagpieData mode GSbandgap', 'MagpieData minimum GSmagmom', 'MagpieData maximum GSmagmom', 'MagpieData range GSmagmom', 'MagpieData mean GSmagmom', 'MagpieData avg_dev GSmagmom', 'MagpieData mode GSmagmom', 'MagpieData minimum SpaceGroupNumber', 'MagpieData maximum SpaceGroupNumber', 'MagpieData range SpaceGroupNumber', 'MagpieData mean SpaceGroupNumber', 'MagpieData avg_dev SpaceGroupNumber', 'MagpieData mode SpaceGroupNumber', 'avg s valence electrons', 'avg p valence electrons', 'avg d valence electrons', 'avg f valence electrons', 'compound possible', 'max ionic char', 'avg ionic char']
input_atts = {'elements':elements, 'elements_tl':elements_tl, 'physical_atts': phys_atts, 'input1024':input1024, 'input512':input512, 'input256':input256, 'input128':input128, 'input64':input64, 'input32':input32}
elem_pos = dict()
i=0
for el in elements:
elem_pos[el] = i
i+=1
def parse_fractions(form):
while '/' in form:
di = form.index('/')
num1 = [x for x in re.findall(r'\d*\.*\d*', form[:di]) if x != ''][-1]
# print num1, 'x2 is:',x[di+1:]
num2 = [x for x in re.findall(r'\d*\.*\d*', form[di + 1:]) if x != ''][0]
# print x, 'num1:', num1, 'num2:', num2, 'xdi:', form[:di], 'xdi2:', form[di+1:]
fract = '%.3f' % (float(num1) / float(num2))
form = form[:di - len(num1)] + fract + form[di + len(num2) + 1:]
return form
#parse_fractions('Mg1/3Ta2/3')
def parse_formula(formula):
#weird_formula = {'SiC3c': 'SiC3C', '(VO)3(AsO4)2*2H2O': '(VO)3(AsO4)2H4O2', 'Zr1.05-1.08Se2': 'Zr1.05Se2.16',
# 'TI2O3': 'Ti2O3', 'SrTIO3': 'SrTiO3', 'SrTIO3': 'SrTiO3'}
#if formula in weird_formula:
# formula = weird_formula[formula]
# print 'working on ', formula
pairs = formulare.findall(formula)
stack = []
curr_str = ''
i = 0
count_brack = 0
res = defaultdict(int)
formula = formula.replace('-', '').replace('@',
'').replace(' ', '').replace('[', '(').replace(']', ')').replace('{',
'(').replace(
'}',
')').replace('@', '').replace('x', '').replace(' ', '')
def parse_simple_formula(x):
# print x,
x = parse_fractions(x)
# print x
pairs = formulare.findall(x)
length = sum((len(p[0]) + len(p[1]) for p in pairs))
# print x,pairs, length, len(x)
assert length == len(x)
formula_dict = defaultdict(int)
for el, sub in pairs:
formula_dict[el] += float(sub) if sub else 1
# print x, formula_dict
return formula_dict
while i < len(formula):
# print 'curr:', formula[i], 'stac:', stack, res, ' form:', formula[i:]
if formula[i] not in ['(', ')'] and not stack:
curr_str = ''
while i < len(formula) and formula[i] != '(':
curr_str += formula[i]
i += 1
fract = re.findall(r'\d*\.*\d*', curr_str)[0]
curr_str = curr_str[len(fract):]
if not len(fract):
fract = 1.
else:
fract = float(fract)
temp_res = parse_simple_formula(curr_str)
for k, v in temp_res.items():
res[k] = temp_res[k] if k not in res else res[k] + temp_res[k]
elif formula[i] not in [')']:
stack.append(formula[i])
i += 1
else:
i += 1
fract = re.findall(r'\d*\.*\d*', formula[i:])[0]
# print formula[i:], fract
i = i + len(fract)
if not len(fract):
fract = 1.
else:
fract = float(fract)
# print fract
curr_str = ''
while stack[-1] != '(':
curr_str += stack.pop()
stack.pop()
curr_str = curr_str[::-1]
fract1 = re.findall(r'\d*\.*\d*', curr_str)[0]
if not len(fract1):
fract *= 1.
else:
fract *= float(fract1)
curr_str = curr_str[len(fract1):]
temp_res = parse_simple_formula(curr_str)
# print temp_res
for k, v in temp_res.items():
temp_res[k] *= fract
# print 'updated:', temp_res
if not stack:
for k, v in temp_res.items():
res[k] = temp_res[k] if k not in res else res[k] + temp_res[k]
# res.update(temp_res)
else:
for i, v in temp_res.items():
stack.append(i)
stack.append(v)
# print 'final:', formula, res
if any([e for e in res if e in ['T', 'D', 'G', 'M', 'Q']]):
print (formula, res)
sum_nums = 1. * sum(res.values())
for k in res: res[k] = 1. * res[k] / sum_nums
return res
def get_fractions(comp):
#print comp
if all(e in elements_tl for e in comp):
return np.array([comp[e] if e in comp else 0 for e in elements_tl], np.float32)
else: return None
def load_csv(train_data_path, val_data_path=None, test_data_path=None, input_types = None, label =None, test_size=None, val_size=0, logger=None):
assert logger is not None
logger.fprint('train data path is ', train_data_path)
data_f = pandas.read_csv(train_data_path)
logger.fprint('input attribute sets are: ', input_types)
if test_data_path:
logger.fprint('test data path is ', test_data_path)
data_ft = pandas.read_csv(test_data_path)
elif test_size:
logger.fprint('splitting data into with test ratio=', test_size)
data_f, data_ft = train_test_split(data_f, test_size=test_size, random_state=12345)
else:
data_ft = pd.DataFrame(columns=data_f.columns)
if val_data_path:
logger.fprint('val data path is ', val_data_path)
data_fv = pandas.read_csv(val_data_path)
elif val_size>0:
data_fv = train_test_split(data_f, val_size=val_size, random_state=12345)
else:
data_fv= data_ft
data_columns = data_f.columns
if not input_types:
input_attributes = data_columns[:-1]
label = data_columns[-1]
else:
input_attributes = []
for input_type in input_types:
input_attributes += input_atts[input_type]
logger.fprint('input attributes are: ', input_attributes)
logger.fprint('label:', label)
train_X = data_f[input_attributes].values
train_y = data_f[label].values
logger.fprint(data_f.describe())
test_X = data_ft[input_attributes].values
test_y = data_ft[label].values
logger.fprint(data_ft.describe())
valid_X = data_fv[input_attributes].values
valid_y = data_fv[label].values
logger.fprint(data_fv.describe())
logger.fprint(' train, test, valid sizes: ', train_X.shape, train_y.shape, test_X.shape, test_y.shape, valid_X.shape, valid_y.shape)
return train_X, train_y, valid_X, valid_y, test_X, test_y
#print get_fractions({'H':0.33, 'O':0.67})
#for comp in ['(3InAs)0.95(In2Te3)0.05', 'Mg1/3Ta2/3', 'KBr']:
# print comp, parse_formula(comp)