-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathmodel_comp.py
385 lines (330 loc) · 17.9 KB
/
model_comp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
#
# This work is made available
# under the Nvidia Source Code License (1-way Commercial).
# To view a copy of this license, visit
# https://nvlabs.github.io/Dancing2Music/License.txt
import os
import time
import numpy as np
import random
import math
import torch
from torch import nn
from torch.autograd import Variable
import torch.optim as optim
from torch.nn.utils import clip_grad_norm_
from utils import Logger
if torch.cuda.is_available():
T = torch.cuda
else:
T = torch
class Trainer_Comp(object):
def __init__(self, data_loader, dance_enc, dance_dec, danceAud_dis, movement_enc, initp_enc, stdp_dec, aud_enc, audstyle_enc, dance_reg=None, args=None, zdance_dis=None):
self.data_loader = data_loader
self.movement_enc = movement_enc
self.initp_enc = initp_enc
self.stdp_dec = stdp_dec
self.dance_enc = dance_enc
self.dance_dec = dance_dec
self.danceAud_dis = danceAud_dis
self.aud_enc = aud_enc
self.audstyle_enc = audstyle_enc
self.train = args.train
self.args = args
if args.train:
self.zdance_dis = zdance_dis
self.dance_reg = dance_reg
self.logger = Logger(args.log_dir)
self.logs = self.init_logs()
self.log_interval = args.log_interval
self.snapshot_ep = args.snapshot_ep
self.snapshot_dir = args.snapshot_dir
self.opt_dance_enc = torch.optim.Adam(self.dance_enc.parameters(), lr=args.lr)
self.opt_dance_dec = torch.optim.Adam(self.dance_dec.parameters(), lr=args.lr)
self.opt_danceAud_dis = torch.optim.Adam(self.danceAud_dis.parameters(), lr=args.lr)
self.opt_audstyle_enc = torch.optim.Adam(self.audstyle_enc.parameters(), lr=args.lr)
self.opt_zdance_dis = torch.optim.Adam(self.zdance_dis.parameters(), lr=args.lr)
self.opt_dance_reg = torch.optim.Adam(self.dance_reg.parameters(), lr=args.lr)
self.opt_stdp_dec = torch.optim.Adam(self.stdp_dec.parameters(), lr=args.lr*0.1)
self.opt_movement_enc = torch.optim.Adam(self.movement_enc.parameters(), lr=args.lr*0.1)
self.latent_dropout = nn.Dropout(p=args.latent_dropout)
self.l1_criterion = torch.nn.L1Loss()
self.gan_criterion = nn.BCEWithLogitsLoss()
self.mse_criterion = nn.MSELoss().cuda()
def init_logs(self):
return {'l_kl_zdance':0, 'l_kl_zmovement':0, 'l_kl_fake_zdance':0, 'l_kl_fake_zmovement':0,
'l_l1_zmovement_mu':0, 'l_l1_zmovement_logvar':0, 'l_l1_stdpSeq':0, 'l_l1_zdance':0,
'l_dis':0, 'l_dis_true':0, 'l_dis_fake':0,
'l_info':0, 'l_info_real':0, 'l_info_fake':0,
'l_gen':0
}
def get_z_random(self, batchSize, nz, random_type='gauss'):
z = torch.randn(batchSize, nz).cuda()
return z
@staticmethod
def ones_like(tensor, val=1.):
return T.FloatTensor(tensor.size()).fill_(val)
@staticmethod
def zeros_like(tensor, val=0.):
return T.FloatTensor(tensor.size()).fill_(val)
def kld_coef(self, i):
return float(1/(1+np.exp(-0.0005*(i-15000))))
def forward(self, stdpSeq, batchsize, aud_style, aud):
self.aud = torch.mean(aud, dim=1)
self.batchsize = batchsize
self.stdpSeq = stdpSeq
self.aud_style = aud_style
### stdpSeq -> z_inits, z_movements
self.pose_0 = stdpSeq[:,0,:]
self.z_init_mu, self.z_init_logvar = self.initp_enc(self.pose_0)
z_init_std = self.z_init_logvar.mul(0.5).exp_()
z_init_eps = self.get_z_random(z_init_std.size(0), z_init_std.size(1), 'gauss')
self.z_init = z_init_eps.mul(z_init_std).add_(self.z_init_mu)
self.z_movement_mus, self.z_movement_logvars = self.movement_enc(stdpSeq)
z_movement_stds = self.z_movement_logvars.mul(0.5).exp_()
z_movement_epss = self.get_z_random(z_movement_stds.size(0), z_movement_stds.size(1), 'gauss')
self.z_movements = z_movement_epss.mul(z_movement_stds).add_(self.z_movement_mus)
self.z_movementSeq_mu = self.z_movement_mus.view(batchsize, -1, self.z_movements.shape[1])
self.z_movementSeq_logvar = self.z_movement_logvars.view(batchsize, -1, self.z_movements.shape[1])
self.z_init, self.z_movements = self.z_init.detach(), self.z_movements.detach()
self.z_movement_mus, self.z_movement_logvars = self.z_movement_mus.detach(), self.z_movement_logvars.detach()
### z_movements -> z_dance
self.z_dance_mu, self.z_dance_logvar = self.dance_enc(self.z_movementSeq_mu, self.z_movementSeq_logvar)
z_dance_std = self.z_dance_logvar.mul(0.5).exp_()
z_dance_eps = self.get_z_random(z_dance_std.size(0), z_dance_std.size(1), 'gauss')
self.z_dance = z_dance_eps.mul(z_dance_std).add_(self.z_dance_mu)
### z_dance -> z_movements
self.recon_z_movements_mu, self.recon_z_movements_logvar = self.dance_dec(self.z_dance)
recon_z_movement_std = self.recon_z_movements_logvar.mul(0.5).exp_()
recon_z_movement_eps = self.get_z_random(recon_z_movement_std.size(0), recon_z_movement_std.size(1), 'gauss')
self.recon_z_movements = recon_z_movement_eps.mul(recon_z_movement_std).add_(self.recon_z_movements_mu)
### z_movements -> stdpSeq
self.recon_stdpSeq = self.stdp_dec(self.z_init, self.recon_z_movements)
### Music to z_dance to z_movements
self.fake_z_dance_mu, self.fake_z_dance_logvar = self.audstyle_enc(aud_style)
fake_z_dance_std = self.fake_z_dance_logvar.mul(0.5).exp_()
fake_z_dance_eps = self.get_z_random(fake_z_dance_std.size(0), fake_z_dance_std.size(1), 'gauss')
self.fake_z_dance = fake_z_dance_eps.mul(fake_z_dance_std).add_(self.fake_z_dance_mu)
self.fake_z_movements_mu, self.fake_z_movements_logvar = self.dance_dec(self.fake_z_dance)
fake_z_movements_std = self.fake_z_movements_logvar.mul(0.5).exp_()
fake_z_movements_eps = self.get_z_random(fake_z_movements_std.size(0), fake_z_movements_std.size(1), 'gauss')
self.fake_z_movements = fake_z_movements_eps.mul(fake_z_movements_std).add_(self.fake_z_movements_mu)
fake_z_movementSeq_mu = self.fake_z_movements_mu.view(batchsize, -1, self.fake_z_movements_mu.shape[1])
fake_z_movementSeq_logvar = self.fake_z_movements_logvar.view(batchsize, -1, self.fake_z_movements_logvar.shape[1])
self.fake_z_movementSeq = torch.cat((fake_z_movementSeq_mu, fake_z_movementSeq_logvar),2)
def backward_D(self):
#real_movements = torch.cat((self.z_movementSeq_mu, self.z_movementSeq_logvar),2)
tmp_recon_mu = self.recon_z_movements_mu.view(self.batchsize, -1, self.z_movements.shape[1])
tmp_recon_logvar = self.recon_z_movements_logvar.view(self.batchsize, -1, self.z_movements.shape[1])
real_movements = torch.cat((tmp_recon_mu, tmp_recon_logvar),2)
fake_movements = self.fake_z_movementSeq
real_labels,_ = self.danceAud_dis(real_movements.detach(), self.aud)
fake_labels,_ = self.danceAud_dis(fake_movements.detach(), self.aud)
ones = self.ones_like(real_labels)
zeros = self.zeros_like(fake_labels)
self.loss_dis_true = self.gan_criterion(real_labels, ones)
self.loss_dis_fake = self.gan_criterion(fake_labels, zeros)
self.loss_dis = (self.loss_dis_true + self.loss_dis_fake)*self.args.lambda_gan
real_dance = torch.cat((self.z_dance_mu, self.z_dance_logvar), 1)
fake_dance = torch.cat((self.fake_z_dance_mu, self.fake_z_dance_logvar), 1)
real_labels, _ = self.zdance_dis(real_dance.detach(), self.aud)
fake_labels, _ = self.zdance_dis(fake_dance.detach(), self.aud)
ones = self.ones_like(real_labels)
zeros = self.zeros_like(fake_labels)
self.loss_zdis_true = self.gan_criterion(real_labels, ones)
self.loss_zdis_fake = self.gan_criterion(fake_labels, zeros)
self.loss_dis += (self.loss_zdis_true + self.loss_zdis_fake)*self.args.lambda_gan
def backward_danceED(self):
# z_dance KL
kl_element = self.z_dance_mu.pow(2).add_(self.z_dance_logvar.exp()).mul_(-1).add_(1).add_(self.z_dance_logvar)
self.loss_kl_z_dance = torch.mean( (torch.sum(kl_element, dim=1).mul_(-0.5) * self.args.lambda_kl_dance))
kl_element = self.fake_z_dance_mu.pow(2).add_(self.fake_z_dance_logvar.exp()).mul_(-1).add_(1).add_(self.fake_z_dance_logvar)
self.loss_kl_fake_z_dance = torch.mean( (torch.sum(kl_element, dim=1).mul_(-0.5) * self.args.lambda_kl_dance))
# z_movement KL
kl_element = self.recon_z_movements_mu.pow(2).add_(self.recon_z_movements_logvar.exp()).mul_(-1).add_(1).add_(self.recon_z_movements_logvar)
self.loss_kl_z_movement = torch.mean( (torch.sum(kl_element, dim=1).mul_(-0.5) * self.args.lambda_kl))
kl_element = self.fake_z_movements_mu.pow(2).add_(self.fake_z_movements_logvar.exp()).mul_(-1).add_(1).add_(self.fake_z_movements_logvar)
self.loss_kl_fake_z_movements = torch.mean( (torch.sum(kl_element, dim=1).mul_(-0.5) * self.args.lambda_kl))
# z_movement reconstruction
self.loss_l1_z_movement_mu = self.l1_criterion(self.recon_z_movements_mu, self.z_movement_mus) * self.args.lambda_zmovements_recon
self.loss_l1_z_movement_logvar = self.l1_criterion(self.recon_z_movements_logvar, self.z_movement_logvars) * self.args.lambda_zmovements_recon
# stdp reconstruction
self.loss_l1_stdpSeq = self.l1_criterion(self.recon_stdpSeq, self.stdpSeq) * self.args.lambda_stdpSeq_recon
# Music2Dance GAN
fake_movements = self.fake_z_movementSeq
fake_labels, _ = self.danceAud_dis(fake_movements, self.aud)
ones = self.ones_like(fake_labels)
self.loss_gen = self.gan_criterion(fake_labels, ones) * self.args.lambda_gan
fake_dance = torch.cat((self.fake_z_dance_mu, self.fake_z_dance_logvar), 1)
fake_labels, _ = self.zdance_dis(fake_dance, self.aud)
ones = self.ones_like(fake_labels)
self.loss_gen += self.gan_criterion(fake_labels, ones) * self.args.lambda_gan
self.loss = self.loss_kl_z_movement + self.loss_kl_z_dance + self.loss_l1_z_movement_mu + self.loss_l1_z_movement_logvar + self.loss_l1_stdpSeq + self.loss_gen
def backward_info_ondance(self):
real_pred = self.dance_reg(self.z_dance)
fake_pred = self.dance_reg(self.fake_z_dance)
self.loss_info_real = self.mse_criterion(real_pred, self.aud_style)
self.loss_info_fake = self.mse_criterion(fake_pred, self.aud_style)
self.loss_info = self.loss_info_real + self.loss_info_fake
def zero_grad(self, opt_list):
for opt in opt_list:
opt.zero_grad()
def clip_norm(self, network_list):
for network in network_list:
clip_grad_norm_(network.parameters(), 0.5)
def step(self, opt_list):
for opt in opt_list:
opt.step()
def update(self):
self.zero_grad([self.opt_danceAud_dis, self.opt_zdance_dis])
self.backward_D()
self.loss_dis.backward(retain_graph=True)
self.clip_norm([self.danceAud_dis, self.zdance_dis])
self.step([self.opt_danceAud_dis, self.opt_zdance_dis])
self.zero_grad([self.opt_dance_enc, self.opt_dance_dec, self.opt_audstyle_enc, self.opt_stdp_dec])
self.backward_danceED()
self.loss.backward(retain_graph=True)
self.clip_norm([self.dance_enc, self.dance_dec, self.audstyle_enc, self.stdp_dec])
self.step([self.opt_dance_enc, self.opt_dance_dec, self.opt_audstyle_enc, self.opt_stdp_dec])
self.zero_grad([self.opt_dance_enc, self.opt_audstyle_enc, self.opt_dance_reg, self.opt_stdp_dec])
self.backward_info_ondance()
self.loss_info.backward()
self.clip_norm([self.dance_enc, self.audstyle_enc, self.dance_reg, self.stdp_dec])
self.step([self.opt_dance_enc, self.opt_audstyle_enc, self.opt_dance_reg, self.opt_stdp_dec])
def test_final(self, initpose, aud, n, thr=0):
self.cuda()
self.movement_enc.eval()
self.stdp_dec.eval()
self.initp_enc.eval()
self.dance_enc.eval()
self.dance_dec.eval()
self.aud_enc.eval()
self.audstyle_enc.eval()
aud_style = self.aud_enc.get_style(aud).detach()
self.fake_z_dance_mu, self.fake_z_dance_logvar = self.audstyle_enc(aud_style)
fake_z_dance_std = self.fake_z_dance_logvar.mul(0.5).exp_()
fake_z_dance_eps = self.get_z_random(fake_z_dance_std.size(0), fake_z_dance_std.size(1), 'gauss')
self.fake_z_dance = fake_z_dance_eps.mul(fake_z_dance_std).add_(self.fake_z_dance_mu)
self.fake_z_movements_mu, self.fake_z_movements_logvar = self.dance_dec(self.fake_z_dance, length=3)
fake_z_movements_std = self.fake_z_movements_logvar.mul(0.5).exp_()
fake_z_movements_eps = self.get_z_random(fake_z_movements_std.size(0), fake_z_movements_std.size(1), 'gauss')
self.fake_z_movements = fake_z_movements_eps.mul(fake_z_movements_std).add_(self.fake_z_movements_mu)
fake_stdpSeq=[]
for i in range(n):
z_init_mus, z_init_logvars = self.initp_enc(initpose)
z_init_stds = z_init_logvars.mul(0.5).exp_()
z_init_epss = self.get_z_random(z_init_stds.size(0), z_init_stds.size(1), 'gauss')
z_init = z_init_epss.mul(z_init_stds).add_(z_init_mus)
fake_stdp = self.stdp_dec(z_init, self.fake_z_movements[i:i+1])
fake_stdpSeq.append(fake_stdp)
initpose = fake_stdp[:,-1,:]
fake_stdpSeq = torch.cat(fake_stdpSeq, dim=0)
flag = False
for i in range(n):
s = fake_stdpSeq[i]
diff = torch.abs(s[1:]-s[:-1])
diffsum = torch.sum(diff)
if diffsum.cpu().detach().numpy() < thr:
flag = True
if flag:
return None
else:
return fake_stdpSeq.cpu().detach().numpy()
def resume(self, model_dir, train=True):
checkpoint = torch.load(model_dir)
self.dance_enc.load_state_dict(checkpoint['dance_enc'])
self.dance_dec.load_state_dict(checkpoint['dance_dec'])
self.audstyle_enc.load_state_dict(checkpoint['audstyle_enc'])
self.stdp_dec.load_state_dict(checkpoint['stdp_dec'])
self.movement_enc.load_state_dict(checkpoint['movement_enc'])
if train:
self.danceAud_dis.load_state_dict(checkpoint['danceAud_dis'])
self.dance_reg.load_state_dict(checkpoint['dance_reg'])
self.opt_dance_enc.load_state_dict(checkpoint['opt_dance_enc'])
self.opt_dance_dec.load_state_dict(checkpoint['opt_dance_dec'])
self.opt_stdp_dec.load_state_dict(checkpoint['opt_stdp_dec'])
self.opt_audstyle_enc.load_state_dict(checkpoint['opt_audstyle_enc'])
self.opt_danceAud_dis.load_state_dict(checkpoint['opt_danceAud_dis'])
self.opt_dance_reg.load_state_dict(checkpoint['opt_dance_reg'])
return checkpoint['ep'], checkpoint['total_it']
def save(self, filename, ep, total_it):
state = {
'stdp_dec': self.stdp_dec.state_dict(),
'movement_enc': self.movement_enc.state_dict(),
'dance_enc': self.dance_enc.state_dict(),
'dance_dec': self.dance_dec.state_dict(),
'audstyle_enc': self.audstyle_enc.state_dict(),
'danceAud_dis': self.danceAud_dis.state_dict(),
'zdance_dis': self.zdance_dis.state_dict(),
'dance_reg': self.dance_reg.state_dict(),
'opt_stdp_dec': self.opt_stdp_dec.state_dict(),
'opt_movement_enc': self.opt_movement_enc.state_dict(),
'opt_dance_enc': self.opt_dance_enc.state_dict(),
'opt_dance_dec': self.opt_dance_dec.state_dict(),
'opt_audstyle_enc': self.opt_audstyle_enc.state_dict(),
'opt_danceAud_dis': self.opt_danceAud_dis.state_dict(),
'opt_zdance_dis': self.opt_zdance_dis.state_dict(),
'opt_dance_reg': self.opt_dance_reg.state_dict(),
'ep': ep,
'total_it': total_it
}
torch.save(state, filename)
return
def cuda(self):
if self.train:
self.dance_reg.cuda()
self.danceAud_dis.cuda()
self.zdance_dis.cuda()
self.stdp_dec.cuda()
self.initp_enc.cuda()
self.movement_enc.cuda()
self.dance_enc.cuda()
self.dance_dec.cuda()
self.aud_enc.cuda()
self.audstyle_enc.cuda()
self.gan_criterion.cuda()
def train(self, ep=0, it=0):
self.cuda()
for epoch in range(ep, self.args.num_epochs):
self.movement_enc.train()
self.stdp_dec.train()
self.initp_enc.train()
self.dance_enc.train()
self.dance_dec.train()
self.danceAud_dis.train()
self.zdance_dis.train()
self.audstyle_enc.train()
self.dance_reg.train()
self.aud_enc.eval()
stdp_recon = 0
for i, (stdpSeq, aud) in enumerate(self.data_loader):
stdpSeq, aud = stdpSeq.cuda().detach(), aud.cuda().detach()
stdpSeq = stdpSeq.view(stdpSeq.shape[0]*stdpSeq.shape[1], stdpSeq.shape[2], stdpSeq.shape[3])
aud_style = self.aud_enc.get_style(aud).detach()
self.forward(stdpSeq, aud.shape[0], aud_style, aud)
self.update()
self.logs['l_kl_zmovement'] += self.loss_kl_z_movement.data
self.logs['l_kl_zdance'] += self.loss_kl_z_dance.data
self.logs['l_l1_zmovement_mu'] += self.loss_l1_z_movement_mu.data
self.logs['l_l1_zmovement_logvar'] += self.loss_l1_z_movement_logvar.data
self.logs['l_l1_stdpSeq'] += self.loss_l1_stdpSeq.data
self.logs['l_kl_fake_zdance'] += self.loss_kl_fake_z_dance.data
self.logs['l_kl_fake_zmovement'] += self.loss_kl_fake_z_movements
self.logs['l_dis'] += self.loss_dis.data
self.logs['l_dis_true'] += self.loss_dis_true.data
self.logs['l_dis_fake'] += self.loss_dis_fake.data
self.logs['l_gen'] += self.loss_gen.data
self.logs['l_info'] += self.loss_info
self.logs['l_info_real'] += self.loss_info_real
self.logs['l_info_fake'] += self.loss_info_fake
print('Epoch:{:3} Iter{}/{}\tl_l1_zmovement mu{:.3f} logvar{:.3f}\tl_l1_stdpSeq {:.3f}\tl_kl_dance {:.3f}\tl_kl_movement {:.3f}\n'.format(epoch, i, len(self.data_loader),
self.loss_l1_z_movement_mu, self.loss_l1_z_movement_logvar, self.loss_l1_stdpSeq, self.loss_kl_z_dance, self.loss_kl_z_movement) +
'\t\t\tl_kl_f_dance {:.3f}\tl_dis {:.3f} {:.3f}\tl_gen {:.3f}'.format(self.loss_kl_fake_z_dance, self.loss_dis_true, self.loss_dis_fake, self.loss_gen))
it += 1
if it % self.log_interval == 0:
for tag, value in self.logs.items():
self.logger.scalar_summary(tag, value/self.log_interval, it)
self.logs = self.init_logs()
if epoch % self.snapshot_ep == 0:
self.save(os.path.join(self.snapshot_dir, '{:04}.ckpt'.format(epoch)), epoch, it)