-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_pretrain_mae.py
239 lines (200 loc) · 9.34 KB
/
main_pretrain_mae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import copy
import json
import random
import warnings
import argparse
import wandb
import numpy as np
from logger import create_logger
from config import get_config
from src.utils.misc import load_model, load_optimizer, init_distributed_mode, cleanup
from src.utils.pos_embed import interpolate_pos_embed
from src.utils.optimizers import get_optimizer
from src.utils.lr_sched import get_lr_scheduler
from src.data.datasets import get_pretrain_dataloaders
from src.data.transforms import mae3d_transforms
from src.models.layers import RMSNorm
from src.models.mae import MaskedAutoencoderViT
from monai.config import print_config
from engine_pretrain_mae import *
import torch
import torch.nn as nn
import torch.distributed as dist
print_config()
def parse_option():
parser = argparse.ArgumentParser('MONAI training and evaluation script', add_help=False)
parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file')
parser.add_argument(
"--opts",
help="Modify config options using the command-line",
default=None,
nargs='+',
)
# distributed training
parser.add_argument("--local_rank", type=int, required=True, help='local rank for DistributedDataParallel')
parser.add_argument('--dist-backend', default='nccl', help='used to set up distributed backend')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
parser.add_argument("--seed", type=int, help='seed')
parser.add_argument("--use_amp", action='store_true')
# wandb configs
parser.add_argument("--use_wandb", action='store_true')
parser.add_argument("--wandb_project", type=str, default="monai-test")
# model parameters
parser.add_argument("--model_name", type=str, help='model name')
parser.add_argument("--model_load_path", type=str, help='path to trained model')
parser.add_argument("--optimizer", type=str, help='training optimizer')
parser.add_argument("--scheduler", type=str, help='learning rate scheduler')
parser.add_argument("--base_lr", type=float, help='base learning rate')
parser.add_argument("--min_lr", type=float, help='minimum learning rate')
parser.add_argument("--weight_decay", type=float, help='max epoch')
parser.add_argument("--grad_clip", type=float, help='gradient clipping')
parser.add_argument("--batch_size", type=int, help='batch size')
parser.add_argument("--num_workers", type=int, help='number of workers for dataloader')
parser.add_argument("--max_epochs", type=int, help='max epoch')
# dataset parameters
parser.add_argument('--train_csv_path', type=str, help='path to train csv file')
parser.add_argument('--val_csv_path', type=str, help='path to val csv file')
parser.add_argument('--test_csv_path', type=str, help='path to test csv file')
args, unparsed = parser.parse_known_args()
config = get_config(args)
return args, config
def main(config, wandb_run):
# Define parameters
max_epochs = config.TRAIN.MAX_EPOCHS
val_every = config.TRAIN.VAL_EVERY
if config.MODEL.NAME == "mae":
# Define transforms for image and segmentation
imtrans = mae3d_transforms(config, mode='train', reshape=True)
imvals = mae3d_transforms(config, mode='val', reshape=True)
imtests = mae3d_transforms(config, mode='test', reshape=True)
else:
raise ValueError(f"Model {config.MODEL.NAME} not supported")
augs = [imtrans, imvals, imtests]
# Create dataloaders
train_loader, val_loader, test_loader = get_pretrain_dataloaders(config, augs)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define model
if config.MODEL.NAME == "mae":
norm_layer = nn.LayerNorm if config.MAE.NORM_LAYER == 'layernorm' else RMSNorm
model = MaskedAutoencoderViT(
input_size=config.MAE.INPUT_SIZE,
patch_size=config.MAE.PATCH_SIZE,
mask_ratio=config.MAE.MASK_RATIO,
in_chans=config.MAE.IN_CHANS,
dropout_rate=config.MAE.DROPOUT_RATE,
spatial_dims=config.MAE.SPATIAL_DIMS,
patch_embed=config.MAE.PATCH_EMBED,
pos_embed=config.MAE.POS_EMBED,
encoder_depth=config.MAE.ENCODER_DEPTH,
encoder_embed_dim=config.MAE.ENCODER_EMBED_DIM,
encoder_mlp_dim=config.MAE.ENCODER_MLP_DIM,
encoder_num_heads=config.MAE.ENCODER_NUM_HEADS,
decoder_depth=config.MAE.DECODER_DEPTH,
decoder_embed_dim=config.MAE.DECODER_EMBED_DIM,
decoder_mlp_dim=config.MAE.DECODER_MLP_DIM,
decoder_num_heads=config.MAE.DECODER_NUM_HEADS,
norm_pix_loss=config.MAE.NORM_PIX_LOSS,
use_bias=config.MAE.USE_BIAS,
norm_layer=norm_layer,
).to(device)
else:
raise ValueError(f"Model {config.MODEL.NAME} not supported")
# Load pretrained model if available
if config.MODEL.PRETRAINED:
loaded_state_dict = torch.load(config.MODEL.PRETRAINED, map_location=torch.device('cpu'))
model_state_dict = loaded_state_dict['state_dict']
new_model_state_dict = {k.replace("module.", ""): v for k, v in model_state_dict.items()}
interpolate_pos_embed(model, new_model_state_dict)
msg = model.load_state_dict(new_model_state_dict, strict=False)
logger.info(f"Load Pretrained Model: {msg} for Architecture: {config.MODEL.NAME}")
# Convert all BatchNorm layers to SyncBatchNorm layers
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
# Use DistributedDataParallel for distributed training
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device], broadcast_buffers=False, find_unused_parameters=True)
torch.backends.cudnn.benchmark = True
world_size = dist.get_world_size()
effective_batch_size = config.DATA.BATCH_SIZE * world_size
total_steps = len(train_loader) * config.TRAIN.MAX_EPOCHS
num_warmup_steps = int(config.TRAIN.PER_WARMUP * total_steps)
# Learning rate scaling
config.defrost()
config.TRAIN.BASE_LR = config.TRAIN.BASE_LR * effective_batch_size / 256
config.TRAIN.MIN_LR = config.TRAIN.BASE_LR * 1e-3
config.freeze()
logger.info(f"Effective Learning Rate: {config.TRAIN.BASE_LR}, Effective Batch Size: {effective_batch_size}, Max Epochs: {config.TRAIN.MAX_EPOCHS}")
logger.info(f"Number of Warmup Steps: {num_warmup_steps}, Total Steps: {total_steps}")
# Create optimizer & scheduler
optimizer = get_optimizer(config, config.TRAIN.BASE_LR, [model])
scheduler = get_lr_scheduler(config, optimizer, num_warmup_steps, total_steps, config.TRAIN.MIN_LR)
# Load optimizer & scheduler if pretrained model is available
if config.MODEL.PRETRAINED:
optimizer, scheduler, start_epoch = load_optimizer(optimizer, scheduler, loaded_state_dict, logger)
else:
start_epoch = 0
# Training and testing
if config.MODEL.NAME == "mae":
train_loss = trainer(
config=config,
model=model,
train_loader=train_loader,
val_loader=val_loader,
optimizer=optimizer,
scheduler=scheduler,
start_epoch=start_epoch,
max_epochs=max_epochs,
val_every=val_every,
logger=logger,
device=device,
wandb_run=wandb_run,
)
logger.info(f"Train completed, best train reconstruction loss: {train_loss:.4f}")
test_loss = tester(
config=config,
model=model,
test_loader=test_loader,
logger=logger,
device=device,
wandb_run=wandb_run,
)
logger.info(f"Test completed, best test reconstruction loss: {test_loss:.4f}")
else:
raise ValueError(f"Model {config.MODEL.NAME} not supported")
cleanup()
def init_seed(seed):
random_seed = seed
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
if __name__ == "__main__":
warnings.filterwarnings("ignore", message="You are using `torch.load` with `weights_only=False`")
args, config = parse_option()
init_distributed_mode(args)
seed = config.SEED + dist.get_rank()
init_seed(seed)
logger = create_logger(output_dir=config.LOG.OUTPUT_DIR, dist_rank=dist.get_rank(), name=config.LOG.FILENAME)
if dist.get_rank() == 0:
path = os.path.join(config.OUTPUT, f"{config.LOG.FILENAME}.json")
with open(path, "w") as f:
f.write(config.dump())
logger.info(f"Full config saved to {path}")
logger.info(config.dump())
logger.info(json.dumps(vars(args)))
wandb_run = None
if config.WANDB.WANDB_ENABLE and dist.get_rank() == 0:
wandb_run = wandb.init(
name=config.LOG.FILENAME,
project=config.WANDB.PROJECT,
config={
"learning_rate": config.TRAIN.BASE_LR,
"batch_size": config.DATA.BATCH_SIZE,
"epochs": config.TRAIN.MAX_EPOCHS,
"backbone": config.MODEL.NAME,
}
)
main(config, wandb_run)