-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
37 lines (32 loc) · 1.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import jax
from jax import numpy as jnp
def topk_correct(logits, labels, mask=None, prefix='', topk=(1, 5)):
"""Calculate top-k error for multiple k values."""
metrics = {}
argsorted_logits = jnp.argsort(logits)
for k in topk:
pred_labels = argsorted_logits[..., -k:]
# Get the number of examples where the label is in the top-k predictions
correct = any_in(pred_labels, labels).any(axis=-1).astype(jnp.float32)
if mask is not None:
correct *= mask
metrics[f'{prefix}top_{k}_acc'] = correct
return metrics
@jax.vmap
def any_in(prediction, target):
"""For each row in a and b, checks if any element of a is in b."""
return jnp.isin(prediction, target)