-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval.py
462 lines (393 loc) · 20.2 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import sys
import os
import random
from attrdict import AttrDict
import numpy as np
import argparse
import torch
# set project search path
ROOT_DIR = os.path.abspath("./")
sys.path.append(ROOT_DIR)
import utils
from config import CONFIG
# import pdb
# ------------------------- respecify important flags ------------------------
def running_cfg(cfg):
###########################################
# Config i/o path
###########################################
if cfg.DATA_TYPE.lower() == 'gqn_jaco':
image_size = [64, 64]
CLASSES = ['_background_', 'jaco', 'generic']
cfg.v_in_dim = 7
cfg.max_sample_views = 6
data_dir = cfg.DATA_ROOT
assert os.path.exists(data_dir)
# train_data_filename = os.path.join(data_dir, 'gqn_jaco', 'gqn_jaco_train.h5')
test_data_filename = os.path.join(data_dir, 'gqn_jaco', 'gqn_jaco_test.h5')
# assert os.path.isfile(train_data_filename)
assert os.path.isfile(test_data_filename)
elif cfg.DATA_TYPE.lower() == 'clevr_mv':
image_size = [64, 64]
CLASSES = ['_background_', 'cube', 'sphere', 'cylinder']
cfg.v_in_dim = 3
cfg.max_sample_views = 6
data_dir = cfg.DATA_ROOT
assert os.path.exists(data_dir)
# train_data_filename = os.path.join(data_dir, 'clevr_mv', 'clevr_mv_train.json')
test_data_filename = os.path.join(data_dir, 'clevr_mv', 'clevr_mv_test.json')
# assert os.path.isfile(train_data_filename)
assert os.path.isfile(test_data_filename)
elif cfg.DATA_TYPE.lower() == 'clevr_aug':
image_size = [64, 64]
CLASSES = ['_background_', 'diamond', 'duck', 'mug', 'horse', 'dolphin']
cfg.v_in_dim = 3
cfg.max_sample_views = 6
data_dir = cfg.DATA_ROOT
assert os.path.exists(data_dir)
# train_data_filename = os.path.join(data_dir, 'clevr_aug', 'clevr_aug_train.json')
test_data_filename = os.path.join(data_dir, 'clevr_aug', 'clevr_aug_test.json')
# assert os.path.isfile(train_data_filename)
assert os.path.isfile(test_data_filename)
# ------------------- For your customised CLEVR -----------------------
elif cfg.DATA_TYPE.lower() == 'your-clevr':
image_size = [64, 64]
CLASSES = ['_background_', 'xxx']
cfg.v_in_dim = 3
cfg.max_sample_views = 6
data_dir = cfg.DATA_ROOT
assert os.path.exists(data_dir)
# train_data_filename = os.path.join(data_dir, 'your-clevr', 'your-clevr_train.json')
test_data_filename = os.path.join(data_dir, 'your-clevr', 'your-clevr_test.json')
# assert os.path.isfile(train_data_filename)
assert os.path.isfile(test_data_filename)
# ------------------- For your customised CLEVR -----------------------
else:
raise NotImplementedError
cfg.view_dim = cfg.v_in_dim
# log directory
ckpt_base = cfg.ckpt_base
if not os.path.exists(ckpt_base):
os.mkdir(ckpt_base)
# model savedir
check_dir = os.path.join(ckpt_base, '{}_log/'.format(cfg.arch))
assert os.path.exists(check_dir)
# os.mkdir(check_dir)
# output prediction dir
out_dir = os.path.join(check_dir, cfg.output_dir_name)
if not os.path.exists(out_dir):
os.mkdir(out_dir)
# saved model dir
save_dir = os.path.join(check_dir, 'saved_models/')
if not os.path.exists(save_dir):
os.mkdir(save_dir)
# generated sample dir (for testing generation)
generated_dir = os.path.join(check_dir, 'generated')
if not os.path.exists(generated_dir):
os.mkdir(generated_dir)
if cfg.resume_path is not None:
assert os.path.isfile(cfg.resume_path)
elif cfg.resume_epoch is not None:
resume_path = os.path.join(save_dir,
'checkpoint-epoch{}.pth'.format(cfg.resume_epoch))
assert os.path.isfile(resume_path)
cfg.resume_path = resume_path
cfg.DATA_DIR = data_dir
cfg.test_data_filename = test_data_filename
cfg.check_dir = check_dir
cfg.save_dir = save_dir
cfg.generated_dir = generated_dir
cfg.output_dir = out_dir
cfg.image_size = image_size
cfg.CLASSES = CLASSES
cfg.num_classes = len(CLASSES)
return cfg
# ---------------------------- main function -----------------------------
def run_evaluation(CFG):
if 'GQN' in CFG.arch:
from models.baseline_gqn import GQN as ScnModel
print(" --- Arch: GQN ---")
elif 'IODINE' in CFG.arch:
from models.baseline_iodine import IODINE as ScnModel
print(" --- Arch: IODINE ---")
elif 'MulMON' in CFG.arch:
from models.mulmon import MulMON as ScnModel
print(" --- Arch: MulMON ---")
else:
raise NotImplementedError
# --- model to be evaluated ---
scn_model = ScnModel(CFG)
torch.cuda.set_device(CFG.gpu)
if CFG.seed is None:
CFG.seed = random.randint(0, 1000000)
utils.set_random_seed(CFG.seed)
if CFG.resume_epoch is not None:
state_dict = utils.load_trained_mp(CFG.resume_path)
scn_model.load_state_dict(state_dict, strict=True)
scn_model.cuda(CFG.gpu)
scn_model.eval()
if 'gqn' in CFG.DATA_TYPE.lower():
from data_loader.getGqnH5 import DataLoader
elif 'clevr' in CFG.DATA_TYPE.lower():
from data_loader.getClevrMV import DataLoader
else:
raise NotImplementedError
eval_dataloader = DataLoader(CFG.DATA_ROOT,
CFG.test_data_filename,
batch_size=CFG.batch_size,
shuffle=True,
use_bg=CFG.use_bg)
if 'gqn' not in CFG.DATA_TYPE.lower():
scene_meta_info = utils.read_json(CFG.test_data_filename)['scenes']
vis_eval_dir = CFG.generated_dir
if not os.path.exists(vis_eval_dir):
os.mkdir(vis_eval_dir)
# --- dict that stores all the evaluation results ---
EVAL_RESULT = AttrDict()
obs_rec_record = []
qry_obs_record = []
obs_seg_miou = []
qry_seg_miou = []
GT_latents = []
# --- running on ---
count_total_samples = 0
num_batches = min(CFG.test_batch, len(eval_dataloader))
for batch_id, (images, targets) in enumerate(eval_dataloader):
if batch_id >= num_batches:
break
# images, targets = next(iter(eval_dataloader))
images = list(image.cuda(CFG.gpu).detach() for image in images)
targets = [{k: v.cuda(CFG.gpu).detach() for k, v in t.items()} for t in targets]
if batch_id >= CFG.vis_batch:
vis_eval_dir = None
print(" predicting on batch: {}/{}".format(batch_id+1, num_batches))
test_out = scn_model.predict(images, targets,
save_sample_to=vis_eval_dir,
save_start_id=count_total_samples,
vis_train=False,
vis_uncertainty=False)
B = len(images)
V = targets[0]['view_points'].shape[0]
num_obs = CFG.num_vq_show
# ----- viewpoints (ids) to be evaluated at -----
# use these lists on GT only, as the output variables are specified by these indices already
obs_view_ids, qry_view_ids = test_out['obs_views'], test_out['query_views']
num_qry = len(qry_view_ids)
assert num_obs==len(obs_view_ids)
# ----- Task performance -----
if CFG.eval_recon:
x_obs, x_rec = test_out['x_images'][:, :num_obs], test_out['x_recon'][:, :num_obs]
rmse_out = np.sqrt(np.sum((x_obs - x_rec)**2, axis=-3).reshape([B, -1]).mean(-1))
obs_rec_record.append(rmse_out)
if CFG.eval_qry_obs:
xq_gt, xq_pred = test_out['x_images'][:, num_obs:], test_out['x_recon'][:, num_obs:]
rmse_out = np.sqrt(np.sum((xq_gt - xq_pred) ** 2, axis=-3).reshape([B, -1]).mean(-1))
qry_obs_record.append(rmse_out)
if CFG.eval_seg:
masks_gt = torch.stack([tar['masks'].squeeze(1) for tar in targets], dim=0).permute(0, 1, 4, 2, 3)
m_gt, m_pred = masks_gt[:, obs_view_ids], \
torch.from_numpy(test_out['hiers'][:, :num_obs]).to(masks_gt.device)
num_comps = np.asarray(list([tar['num_comps'].item()] * num_obs for tar in targets), dtype='uint8')
# Matching: find the best pred-gt object pairs as we don't enforce any permutation in the predictions
_, match_list = utils.match_or_compute_segmentation_iou(m_pred, m_gt, num_comps,
threshold=1.0)
# compute mIoU using the match we find
obs_seg_miou += utils.match_or_compute_segmentation_iou(m_pred, m_gt, num_comps,
match_list=match_list, threshold=1.0)[0]
if CFG.eval_qry_seg:
masks_gt = torch.stack([tar['masks'].squeeze(1) for tar in targets], dim=0).permute(0, 1, 4, 2, 3)
m_gt, m_pred = masks_gt[:, qry_view_ids], \
torch.from_numpy(test_out['hiers'][:, num_obs:]).to(masks_gt.device)
num_comps = np.asarray(list([tar['num_comps'].item()] * num_qry for tar in targets), dtype='uint8')
# Matching: find the best pred-gt object pairs as we don't enforce any permutation in the predictions
_, match_list = utils.match_or_compute_segmentation_iou(m_pred, m_gt, num_comps,
threshold=1.0)
# compute mIoU using the match we find
qry_seg_miou += utils.match_or_compute_segmentation_iou(m_pred, m_gt, num_comps,
match_list=match_list, threshold=1.0)[0]
# ----- Save latents for disentanglement analysis -----
if batch_id < CFG.analyse_batch and CFG.eval_dist:
# find matches
assert num_obs == V, "Use all available observations for disentanglement evaluation"
assert CFG.batch_size == 1, "Must set batch size to 1 for disentanglement evaluation"
assert "clevr" in CFG.DATA_TYPE.lower()
masks_gt = torch.stack([tar['masks'].squeeze(1) for tar in targets], dim=0).permute(0, 1, 4, 2, 3)
m_gt, m_pred = masks_gt[:, obs_view_ids], \
torch.from_numpy(test_out['hiers'][:, :num_obs]).to(masks_gt.device)
num_comps = np.asarray(list([tar['num_comps'].item()] * num_obs for tar in targets), dtype='uint8')
# Matching: find the best pred-gt object pairs as we don't enforce any permutation in the predictions
_, match_list = utils.match_or_compute_segmentation_iou(m_pred, m_gt, num_comps,
threshold=1.0)
z_2d = test_out['2d_latents']
z_3d = test_out['3d_latents']
scene_meta_info = utils.read_json(CFG.test_data_filename)['scenes']
# we need remove background reps as it is less important
z_2d = list(z_2d[0, vid, match_list[vid][1:]] for vid in range(V))
z_3d = list(z_3d[0, vid, match_list[vid][1:]] for vid in range(V)) # delete background
g_latent = utils.save_latents_for_eval(z_v_out=z_2d,
z_out=z_3d,
scn_indices=test_out['scene_indices'],
qry_views=obs_view_ids,
gt_scenes_meta=scene_meta_info,
out_dir=os.path.join(CFG.output_dir, 'latents'),
save_count=count_total_samples)
GT_latents += g_latent
count_total_samples += len(images)
if CFG.eval_recon:
rmse_record = np.concatenate(obs_rec_record, axis=0).mean()
EVAL_RESULT['rmse_rec'] = rmse_record.item()
if CFG.eval_qry_obs:
qry_obs_record = np.concatenate(qry_obs_record, axis=0).mean()
EVAL_RESULT['rmse_qry'] = qry_obs_record.item()
if CFG.eval_seg:
EVAL_RESULT['miou_seg'] = np.stack(obs_seg_miou, axis=0).mean().item()
if CFG.eval_qry_seg:
EVAL_RESULT['miou_qry'] = np.stack(qry_seg_miou, axis=0).mean().item()
if len(GT_latents) > 0:
utils.write_json({'scene_meta': GT_latents}, os.path.join(CFG.output_dir, 'gt_latent_meta.json'))
utils.write_json(EVAL_RESULT, os.path.join(CFG.check_dir, 'eval_{}.json'.format(CFG.DATA_TYPE)))
return EVAL_RESULT
def main(cfg):
parser = argparse.ArgumentParser()
parser.add_argument('--arch', type=str, default='ScnModel',
help="architecture name or model nickname")
parser.add_argument('--datatype', type=str, default='clevr_mv',
help="one of [clevr_mv, clevr_aug, gqn-jaco]")
parser.add_argument('--batch_size', default=16, type=int, metavar='N',
help='number of data samples of a minibatch')
parser.add_argument('--test_batch', default=10000, type=int, metavar='N',
help='run model on only the first [N] batch of the data set')
parser.add_argument('--vis_batch', default=1, type=int, metavar='N',
help='visualise only the first [N] batch and save to the generated dir')
parser.add_argument('--analyse_batch', default=1, type=int, metavar='N',
help='save and analyse only the first [N] batch latent codes')
parser.add_argument('--work_mode', type=str, default='testing', help="model's working mode")
parser.add_argument('--resume_epoch', default=500, type=int, metavar='N',
help='resume weights from [N]th epochs')
parser.add_argument('--output_name', default=None, type=str,
help='save the prediction output to the specified dir')
parser.add_argument('--gpu', default=0, type=int, help='specify id of gpu to use')
parser.add_argument('--seed', default=0, type=int, help='random seed')
# Model spec
parser.add_argument('--num_slots', default=7, type=int, help='(maximum) number of component slots')
parser.add_argument('--temperature', default=0.0, type=float,
help='spatial scheduler increase rate, the hotter the faster coeff grows')
parser.add_argument('--latent_dim', default=16, type=int, help='size of the latent dimensions')
parser.add_argument('--view_dim', default=5, type=int, help='size of the viewpoint latent dimensions')
parser.add_argument('--min_sample_views', default=1, type=int, help='mininum allowed #views for scene learning')
parser.add_argument('--max_sample_views', default=5, type=int, help='maximum allowed #views for scene learning')
parser.add_argument('--num_vq_show', default=5, type=int, help='#views selected for visualisation')
parser.add_argument('--pixel_sigma', default=0.1, type=float, help='loss strength item')
parser.add_argument('--num_mc_samples', default=10, type=int, help='monte carlo samples for uncertainty estimation')
parser.add_argument('--kl_latent', default=1.0, type=float, help='loss strength item')
parser.add_argument('--kl_spatial', default=1.0, type=float, help='loss strength item')
parser.add_argument('--exp_attention', default=1.0, type=float, help='loss strength item')
parser.add_argument('--query_nll', default=1.0, type=float, help='loss strength item')
parser.add_argument('--exp_nll', default=1.0, type=float, help='loss strength item')
parser.add_argument("--use_bg", default=False, help="treat background also an object",
action="store_true")
parser.add_argument("--eval_all", default=False, help="evaluate model with all the metrics",
action="store_true")
parser.add_argument("--eval_recon", default=False, help="perform reconstruction evaluation",
action="store_true")
parser.add_argument("--eval_seg", default=False, help="perform segmentation evaluation",
action="store_true")
parser.add_argument("--eval_qry_obs", default=False, help="perform queried Obs.Pred. evaluation",
action="store_true")
parser.add_argument("--eval_qry_seg", default=False, help="perform queried Seg.Pred. evaluation",
action="store_true")
parser.add_argument("--eval_dist", default=False, help="perform disentanglement evaluation",
action="store_true")
parser.add_argument("-i", '--input_dir', required=True, help="path to the input data for the model to read")
parser.add_argument("-o", '--output_dir', required=True, help="destination dir for the model to write out results")
args = parser.parse_args()
###########################################
# General reconfig
###########################################
cfg.gpu = args.gpu
cfg.arch = args.arch
cfg.DATA_TYPE = args.datatype
cfg.batch_size = args.batch_size
cfg.test_batch = args.test_batch
cfg.vis_batch = args.vis_batch
cfg.analyse_batch = args.analyse_batch
cfg.WORK_MODE = args.work_mode
cfg.resume_epoch = args.resume_epoch
cfg.output_dir_name = args.output_name
cfg.seed = args.seed
# model specs
cfg.num_slots = args.num_slots
cfg.temperature = args.temperature
cfg.latent_dim = args.latent_dim
cfg.view_dim = args.view_dim
cfg.min_sample_views = args.min_sample_views
cfg.max_sample_views = args.max_sample_views
cfg.num_vq_show = args.num_vq_show
cfg.num_mc_samples = args.num_mc_samples
cfg.pixel_sigma = args.pixel_sigma
cfg.elbo_weights = {
'kl_latent': args.kl_latent,
'kl_spatial': args.kl_spatial,
'exp_attention': args.exp_attention,
'exp_nll': args.exp_nll,
'query_nll': args.query_nll
}
# I/O path configurations
cfg.DATA_ROOT = args.input_dir
cfg.ckpt_base = args.output_dir
# eval specs
cfg.use_bg = args.use_bg
if args.eval_all:
cfg.eval_recon = True
cfg.eval_seg = True
cfg.eval_qry_obs = True
cfg.eval_qry_seg = True
else:
cfg.eval_recon = args.eval_recon
cfg.eval_seg = args.eval_seg
cfg.eval_qry_obs = args.eval_qry_obs
cfg.eval_qry_seg = args.eval_qry_seg
if args.eval_dist:
cfg.eval_dist = True
if 'gqn' in cfg.arch.lower():
cfg.eval_seg = False
running_cfg(cfg)
# ---------- RUNNING EVALUATION ----------
eval_scores = run_evaluation(cfg)
print("\n =========== Model '{}' Evaluated on '{}' dataset =========== \n".format(cfg.arch, cfg.DATA_TYPE))
# print evaluation form
if args.eval_all:
# Recomposition
print('\n <Reconstruction>:')
print(' -Rec_RMSE: {}'.format(eval_scores['rmse_rec']))
# Observation querying
print('\n <Querying observation>:')
print(' -Qry_RMSE: {}'.format(eval_scores['rmse_qry']))
# Segmentation
print('\n <Segmentation>:')
print(' -Seg_mIoU: {}'.format(eval_scores['miou_seg']))
# Segmentation querying
print('\n <Querying segmentation>:')
print(' -Query_mIoU: {}'.format(eval_scores['miou_qry']))
else:
if cfg.eval_recon:
print('\n <Reconstruction>:')
print(' -Rec_RMSE: {}'.format(eval_scores['rmse_rec']))
if cfg.eval_qry_obs:
print('\n <Querying observation>:')
print(' -Query_RMSE: {}'.format(eval_scores['rmse_qry']))
if cfg.eval_seg:
print('\n <Segmentation>:')
print(' -Seg_mIoU: {}'.format(eval_scores['miou_seg']))
if cfg.eval_qry_seg:
print('\n <Querying segmentation>:')
print(' -Query_mIoU: {}'.format(eval_scores['miou_qry']))
if args.eval_dist:
print(" check the saved latent codes here:\n {}".format(os.path.join(cfg.output_dir, 'latents')))
print(" configure https://github.com/cianeastwood/qedr.git for disentanglement quantification.")
print('\n ===============================================')
print(' EVALUATION FINISHED\n\n')
##############################################################################
if __name__ == "__main__":
cfg = CONFIG()
main(cfg)