-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcore.py
669 lines (523 loc) · 21.3 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
# pylint: disable=invalid-name
"""Phylo2Vec definition."""
import random
import re
import warnings
import numpy as np
from ete3 import Tree
from utils.data import parse_dates, read_fasta
POS_INT_PATTERN = re.compile(r"\b\d+\b")
class Phylo2Vec:
"""A Phylo2Vec object.
Parameters
----------
n_leaves : int, optional
Number of leaf nodes/taxa, by default None
msa_path : str, optional
Path to a FASTA file for an MSA, by default None
v : numpy.ndarray, optional
v representation of a tree, by default None
newick : str
Newick representation of a tree, by default None
date_path : str, optional
Path to a CSV file containing dates for each taxon, by default None
cf. treetime
rooted : bool, optional
If False, unroot the tree, by default True
"""
def __init__(
self,
n_leaves=None,
msa_path=None,
v=None,
newick=None,
date_path=None,
rooted=True,
):
self.n_leaves = n_leaves
self.data = None
self.v = v
self.newick = newick
self.rooted = rooted
if self.n_leaves is None:
# Find the number of taxa/leaves using a predefined v
if self.v is not None:
self.v = v
self.n_leaves = len(self.v) + 1
# Find the number of taxa/leaves using a predefined Newick string
if self.newick is not None:
# TODO add taxa dict from Newick
if v is not None:
warnings.warn(
"Value of 'v' will be overwritten using 'newick'.", UserWarning
)
self.v = self.newick2v(self.newick, n_leaves=self.n_leaves)
self.n_leaves = len(self.v) + 1
# Find the number of taxa/leaves using an MSA
if msa_path is not None:
self.data = read_fasta(msa_path)
self.taxa_dict = dict(enumerate(self.data.columns))
self.n_leaves = self.data.shape[1]
self._check_msa_and_v()
self._check_msa_and_newick()
elif self.n_leaves is None:
raise ValueError(
"At least one of `msa_path`, `n_leaves`, "
"`newick`, or `v` must be not `None`."
)
else:
self.taxa_dict = {i: f"t{i}" for i in range(self.n_leaves)}
else:
# Sample a random v
self.v = self.sample()
self.taxa_dict = {i: f"t{i}" for i in range(self.n_leaves)}
self.n_nodes = 2 * self.n_leaves - 1
# Chronological data
if date_path is not None:
_dates = parse_dates(date_path)
# Sort with random ties
self.dates = dict(
sorted(_dates.items(), key=lambda x: (x[1], random.random()))
)
else:
self.dates = None
def __repr__(self):
format_string = f"{self.__class__.__name__}("
for item in ["v", "newick", "n_leaves", "taxa_dict", "dates"]:
format_string += "\n"
# TODO: pprint if dict?
format_string += f"\t{item}={repr(self.__getattribute__(item))},"
format_string = format_string[:-1] + "\n)"
return format_string
def sample(self):
"""Sample a random tree via Phylo2Vec
Returns
-------
numpy.ndarray
Phylo2Vec vector where v_i in {0, 1, ..., 2*i}
"""
return np.array([random.randint(0, 2 * i) for i in range(self.n_leaves - 1)])
def reroot_at_random(self):
"""Reroot v by setting a random node as the outgroup."""
ete3_tree = self.label_tree(with_taxa_labels=False)
ete3_tree.set_outgroup(f"{random.randint(0, self.n_nodes - 2)}")
self.newick = ete3_tree.write(format=9)
self.v = self.newick2v(self.newick, n_leaves=self.n_leaves)[1:]
def label_tree(self, with_taxa_labels=True):
"""Label a tree from Phylo2Vec
Returns
-------
tree : ete3.Tree
Tree representing the node ancestry (M) with branch_lengths
"""
M = self._get_ancestry()
# Build tree
# if with_branch_lengths:
# # Get dummy branch lengths
# branch_lengths = _get_dummy_branch_lengths(M)
# tree = _build_tree_with_branch_lengths(M, branch_lengths)
# else:
tree = self._build_tree(M.astype(str))
if not self.rooted:
tree.unroot()
if with_taxa_labels:
for leaf in tree.iter_leaves():
leaf.name = self.taxa_dict[int(leaf.name)]
return tree
# def reorder(self, method, **kwargs):
# """Reorder nodes according to a specific method
# Parameters
# ----------
# method : str
# Name of reordering method. Available: 'birth_death', 'bfs', 'chronological'.
# **kwargs : kwargs
# Optional keyword arguments
# Returns
# -------
# M_new : numpy.ndarray
# New "ancestry" array
# taxa_dict_new : dict[int, str]
# New mapping of node label (integer) to taxa
# """
# M_old = self._get_ancestry()
# if method == "birth_death":
# M_new, taxa_dict_new = self._reorder_birth_death(
# M_old, self.taxa_dict, **kwargs
# )
# elif method == "bfs":
# M_new, taxa_dict_new = self._reorder_bfs(M_old, self.taxa_dict)
# elif method == "chronological":
# M_new, taxa_dict_new = self._reorder_custom(
# M_old, self.taxa_dict, order=list(self.dates.keys())
# )
# elif method == "custom":
# M_new, taxa_dict_new = self._reorder_custom(M_old, self.taxa_dict, **kwargs)
# else:
# raise ValueError(
# "`method` must be 'birth_death', 'bfs', 'chronological', or 'custom'."
# )
# tree = self._build_tree(M_new.astype(str))
# self.v = self.newick2v(
# tree.write(format=9), ete3_format=9, n_leaves=self.n_leaves
# )[1:]
# self.taxa_dict = taxa_dict_new
# def get_newick(self, ete3_format=8):
# return self.label_tree().write(
# format=ete3_format
# ) # if self.newick is None else self.newick
def _check_msa_and_v(self):
if self.v is None:
self.v = self.sample() # FIXME
return len(self.v) + 1 == self.data.shape[1]
def _check_msa_and_newick(self):
if self.newick is None:
return True
return set(Tree(self.newick).get_leaf_names()) == set(self.data.columns)
def _get_ancestry(self):
"""Get pairs and ancestry for each node given a v-representation.
Returns
-------
M : numpy.ndarray
1st column: parent
2nd and 3rd column: children
"""
k = len(self.v)
assert np.all(self.v <= 2 * np.arange(k)), print(
self.v, self.v <= 2 * np.arange(k)
)
labels = np.tril([np.arange(k + 1)] * (k + 1))
# Which nodes have not been processed?
not_processed = np.ones(k, dtype="bool")
M = np.zeros((k, 3), dtype=np.int32)
for _ in range(k):
cond = (self.v <= labels[:k, :].max(1)) & (not_processed)
n = len(cond) - cond[::-1].argmax() - 1
m = np.argmax(labels[n, :] == self.v[n])
M[_, 0] = labels[-1, m]
M[_, 1] = labels[-1, n + 1]
labels[n:, m] = labels[n:, :].max(1) + 1
M[_, 2] = labels[-1, m]
not_processed[n] = False
return np.flip(M)
@staticmethod
def _build_tree(M):
"""Build a tree from an "ancestry" array
The input M should always be 3-dimensional with the following format:
1st column: parent node
2nd column: children 1
3rd column: children 2
M is processed such that we iteratively write a Newick string
to describe the tree.
Parameters
----------
M : numpy.ndarray
"Ancestry" array of size (n_leaves - 1, 3)
Returns
-------
ete3.TreeNode
ete3 tree object built from a Newick string
"""
# List of parent nodes
par_nodes = []
# List of Newick sub-strings
sub_newicks = []
for i in reversed(range(len(M))):
par, ch1, ch2 = M[i, :]
# Case 1: Both children are parent nodes, so we have sub-newicks for them
if ch1 in par_nodes and ch2 in par_nodes:
# Find their indices
idx1 = par_nodes.index(ch1)
idx2 = par_nodes.index(ch2)
# Merge the sub-newicks and add the parent node
sub_newicks[idx1] = f"({sub_newicks[idx1]},{sub_newicks[idx2]}){par}"
# Update the parent node for the 1st children
par_nodes[idx1] = par
# Discard info on 2nd children as merged with the 1st children
sub_newicks.remove(sub_newicks[idx2])
par_nodes.remove(par_nodes[idx2])
# Case 2: only the first child is a parent node
elif ch1 in par_nodes:
# Find its index
idx = par_nodes.index(ch1)
# Update its sub-Newick:
# (sub_child1.1, sub_child1.2)child_1 becomes:
# ((sub_child1.1, sub_child1.2)child_1, child_2)parent
sub_newicks[
idx
] = f"({sub_newicks[idx].replace(ch1, f'{ch1},{ch2}){par}')}"
# Update the parent node (first child is now just an internal node)
par_nodes[idx] = par
# Case 3: only the second child is a parent node (similar to Case 2)
elif ch2 in par_nodes:
idx = par_nodes.index(ch2)
# (sub_child2.1, sub_child2.2)child_2 becomes:
# ((sub_child2.1, sub_child2.2)child_2, child_2)parent
sub_newicks[
idx
] = f"({sub_newicks[idx].replace(ch2, f'{ch2},{ch1}){par}')}"
par_nodes[idx] = par
# Case 4: the children nodes have not been added yet
else:
# Add a new sub-Newick for this triplet
sub_newicks.append(f"({ch1},{ch2}){par}")
# Append the parent node
par_nodes.append(par)
# Only one Newick sub-string should be left, with only one parent: the root node
newick = sub_newicks[0] + ";"
# Convert to ete3 (for legacy reasons)
return Tree(newick, format=8)
@staticmethod
def newick2v(nw, n_leaves=None, ete3_format=1, reroot=False):
"""Convert a newick-format tree to its v representation
Parameters
----------
nw : str
Newick representation of a tree
n_leaves : int, optional
Number of leaves, by default None
(Saves some computation time if fed in advance)
ete3_format : int, optional
Newick string format in ete3, by default 1
reroot : bool, optional
If true, "re-root" the Newick string, by default False
Returns
-------
v: numpy.ndarray
v representation of nw
"""
if ete3_format != 9 or reroot:
# Rewrite to Newick format 9 (only leaf nodes)
t = Tree(nw, format=ete3_format)
if reroot:
t.set_outgroup(t.get_midpoint_outgroup())
nw = t.write(format=9)
n_leaves = len(t.get_leaves())
elif n_leaves is None:
# Faster when n_leaves is used, this is just in case
# TODO: n_leaves as non-optional argument?
n_leaves = max(int(s) for s in re.findall(POS_INT_PATTERN, nw)) + 1
# Phylo2Vec vector
v = np.zeros(n_leaves, dtype=np.int16)
# Whether each leaf node has been processed or not
processed = np.zeros(n_leaves, dtype=bool)
vmin = np.zeros(n_leaves, dtype=np.int16)
labels = np.arange(n_leaves, dtype=np.int16)
try:
for _ in range(n_leaves - 1):
# Name of left leaf
left_leaf = ""
for i in range(n_leaves):
if processed[n_leaves - i - 1] == 0:
# Find whether the node with the current label has a sister node
label = labels[n_leaves - i - 1]
# Is label on the left of a newick pair?
if nw.find(f"({label},") > -1:
left_sep = f"({label},"
right_sep = ")"
# Sister node = substring between last left_sep and first right_sep
left_leaf = nw.rpartition(left_sep)[2].partition(right_sep)[
0
]
# Is label on the right of a newick pair?
elif nw.find(f",{label})") > -1:
left_sep = "("
right_sep = f",{label})"
# Sister node = substring between last left_sep and first right_sep
left_leaf = nw.partition(right_sep)[0].rpartition(left_sep)[
2
]
# Otherwise --> it has no sister node No sister node --> we can skip it
else:
continue
# If the sister substring is an actual digit, we can stop
if left_leaf.isdigit():
break
# Reset the left_leaf if it wasn't a digit
else:
left_leaf = ""
# TODO: finish documentation
left_idx = np.arange(len(labels))[labels == int(left_leaf)][0]
right_leaf = n_leaves - i - 1
for n in range(right_leaf + 1, n_leaves):
if not processed[n]:
if vmin[n] == 0:
vmin[n] = n
else:
vmin[n] += 1
labels[left_idx] = labels.max() + 1
if vmin[right_leaf] == 0:
v[right_leaf] = left_idx
else:
v[right_leaf] = vmin[right_leaf]
# Update the processed vector
processed[right_leaf] = True
# Update the Newick string
nw = nw.replace(
f"({left_leaf},{labels[right_leaf]})", str(labels[int(left_idx)])
)
nw = nw.replace(
f"({labels[right_leaf]},{left_leaf})", str(labels[int(left_idx)])
)
except IndexError as e:
raise IndexError(
"Have you tried reroot=True? "
"Are the Newick nodes integers (and not taxa)? "
"If the error still persists, your tree might be unrooted or non-binary."
) from e
return v
@staticmethod
def _reorder_birth_death(M_old, taxa_dict_old, reorder_internal=True):
"""Reorder leaf nodes via its "ancestry" array
The input M should always be 3-dimensional with the following format:
1st column: parent node
2nd column: children 1
3rd column: children 2
Structure of the algorithm:
* Traverse the tree in a level-order fashion (BFS)
* Reorder the internal labels according to their depth
--> the root will be labelled R=2*(n_leaves - 1), its descendants R-1, R-2, etc.
* Reorder the leaf nodes in the following fashion:
Example:
////-3
////6|
////7| \\\\-2
| |
-8| \\\\-1
|
| ////-4
\\\\5|
\\\\-0
The ancestry array of this tree is:
[8, 7, 5]
[7, 6, 1]
[6, 3, 2]
[5, 4, 0]
Unrolled, it becomes:
8 7 5 6 1 3 2 4 0
We encode the nodes as it:
Start by encoding the first two non-root nodes as 0, 1
For the next pairs:
* The left member takes the label was the previous parent node
* The right member increments the previous right member by 1
Ex:
8 7 5 6 1 3 2 4 0
0 1 0 2
then
8 7 5 6 1 3 2 4 0
0 1 0 2 1 3
then
8 7 5 6 1 3 2 4 0
0 1 0 2 1 3 0 4
The code for the leaf nodes (0, 1, 2, 3, 4) is their new label
Parameters
----------
M : numpy.ndarray
Current "ancestry" array of size (n_leaves - 1, 3)
taxa_dict_old : dict[int, str]
Current mapping of node label (integer) to taxa
Returns
-------
M_new : numpy.ndarray
New "ancestry" array
taxa_dict_new : dict[int, str]
New mapping of node label (integer) to taxa
"""
# Copy old M
M_new = M_old.copy()
# Internal nodes to visit (2*len(M_old) = root label)
to_visit = [2 * len(M_old)]
# Number of visits
visits = 1
# Internal labels
internal_labels = list(range(len(M_old) + 1, 2 * len(M_old)))
# Leaf "code"
node_code = []
# List of all visited nodes
visited = []
# List of visited internal nodes
visited_internals = []
# Taxa dict to be updated
taxa_dict_new = {}
while len(to_visit) > 0:
row = 2 * len(M_old) - to_visit.pop(0)
# some trickery
if node_code:
next_pair = [node_code[visited.index(visited_internals.pop(0))], visits]
else:
next_pair = [0, 1]
for i, child in enumerate(M_old[row, 1:]):
if child < len(M_old) + 1:
# Update taxa dict (not sure that's correct but hey)
taxa_dict_new[next_pair[i]] = taxa_dict_old[child]
# Update M_new (23.01: ugly)
M_new[row, i + 1] = next_pair[i]
# Not a leaf node --> add it to the visit list
else:
visited_internals.append(child)
if reorder_internal:
# Basically, flip the nodes
# Ex: relabel 7 in M_old as 9 in M_new
# Then relabel 9 in M_old as 7 in M_new
internal_node = internal_labels.pop()
M_new[row, i + 1] = internal_node
M_new[2 * len(M_new) - M_old[row, i + 1], 0] = M_new[row, i + 1]
to_visit.append(child)
visited.extend(M_old[row, 1:])
node_code.extend(next_pair)
visits += 1
# Re-sort M such that the root node R is the first row, then internal nodes R-1, R-2, ...
return M_new[M_new[:, 0].argsort()[::-1]], taxa_dict_new
@staticmethod
def _reorder_bfs(M_old, taxa_dict_old):
"""Reorder leaf nodes via its "ancestry" array (UNUSED)
The input M should always be 3-dimensional with the following format:
1st column: parent node
2nd column: children 1
3rd column: children 2
This is essentially an adaptation of breadth-first search for M.
The leaf orders are labelled according to their depth
i.e., leaf 0 has the fewest connections to the root,
and the last leaf label is the deepest.
Parameters
----------
M : numpy.ndarray
Current "ancestry" array of size (n_leaves - 1, 3)
taxa_dict_old : dict[int, str]
Current mapping of node label (integer) to taxa
Returns
-------
M_new : numpy.ndarray
New "ancestry" array
taxa_dict_new : dict[int, str]
New mapping of node label (integer) to taxa
"""
# Copy old M
M_new = M_old.copy()
# Internal nodes to visit (2*len(M_old) = root label)
to_visit = [2 * len(M_old)]
# Leaf order
order = []
# Taxa dict to be updated
taxa_dict_new = {}
while len(to_visit) > 0:
# Current row of M
row = 2 * len(M_old) - to_visit.pop(0)
for i, child in enumerate(M_old[row, 1:]):
# Leaf node
if child < len(M_old) + 1:
order.append(child)
# Update taxa dict
taxa_dict_new[len(order) - 1] = taxa_dict_old[child]
# Update M_new
M_new[row, i + 1] = len(order) - 1
# Not a leaf node --> add it to the visit list
else:
to_visit.append(child)
return M_new, taxa_dict_new
@staticmethod
def _reorder_custom(M_old, taxa_dict_old, order):
taxa_dict_new = dict(enumerate(order))
taxa_dict_new_reversed = {v: k for k, v in taxa_dict_new.items()}
key_changes = {k: taxa_dict_new_reversed[v] for k, v in taxa_dict_old.items()}
M_new = np.vectorize(lambda x: key_changes.get(x, x))(M_old)
return M_new, taxa_dict_new