-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreport.tex
121 lines (91 loc) · 3.79 KB
/
report.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
\documentclass{article}
\usepackage[utf8]{inputenc} % For encoding
\usepackage{graphicx} % For including images
\usepackage{amsmath} % For mathematical formulas
\usepackage{biblatex} % For bibliography management
\usepackage{float} % For fixing the position of tables/figures
\addbibresource{references.bib} % Add your bibliography file here
\title{Microwave Experiment}
\author{Chen En, Ho}
\date{\today}
\begin{document}
\maketitle
\begin{abstract}
This is the abstract where you provide a brief summary of the document.
\end{abstract}
\section{Introduction}
In this section, you will introduce the topic and provide the background or motivation for your study.
\section{Methodology}
Here, describe the methods and approaches you used in your research or study.
\section{Experimental Apparatus}
This section includes the description of the experimental setup and apparatus you used in your work.
\section{Results \& Discussions}
The table below presents the data for \( V_{\text{peak-low}} \) and \( \frac{1}{4} \lambda \), along with the calculated mean and uncertainties for \( \lambda \)\footnote{In this article, the uncertainties consist of both Type A and Type B uncertainties. The total uncertainty is calculated using error propagation.}.
\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|}
\hline
\( V_{\text{peak-low}} \) & \( V_{\text{peak-low}} \) & \( \frac{1}{4} \lambda \) (mm) \\
\hline
157 & 147.5 & 9.5 \\
147.5 & 137 & 10.5 \\
137 & 124 & 13 \\
124 & 113.5 & 10.5 \\
113.5 & 101.5 & 12 \\
101.5 & 91.5 & 10 \\
91.5 & 79.9 & 11.6 \\
\hline
\end{tabular}
\caption{Values of \( V_{\text{peak-low}} \) and corresponding \( \frac{1}{4} \lambda \).}
\end{table}
Therefore, the wavelength \( \lambda \) with its total uncertainty is:
\[
\lambda = 0.04406 \, \text{m} \pm 0.00186 \, \text{m} \quad (4.23\%)
\]
Then, a relationship between the intensity $I$ and the distance from a node $d$ is measured.
\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
I ($\nu$A) & \( I \) (A) & d (mm) & \( \bar{d} \) (m) \\
\hline
-0.0025 & -2.7E-09 & 136.9 & 1E-04 \\
-0.0027 & 1.2E-08 & 137 & 0.0011 \\
0.012 & 3.75E-08 & 138 & 0.0021 \\
0.0375 & 8.58E-08 & 139 & 0.0031 \\
0.0858 & 1.216E-07 & 140 & 0.0041 \\
0.1216 & 1.698E-07 & 141 & 0.0051 \\
0.1698 & 2.264E-07 & 142 & 0.0061 \\
0.2264 & 2.792E-07 & 143 & 0.0071 \\
0.2792 & 3.178E-07 & 144 & 0.0081 \\
0.3178 & 3.54E-07 & 145 & 0.0091 \\
0.354 & 3.636E-07 & 146 & 0.01081 \\
0.3636 & & 147.71 & \\
\hline
\end{tabular}
\caption{Values of \( I (\nu A) \), \( I \, \text{(A)} \), \( d \, \text{(mm)} \), and \( \bar{d} \, \text{(m)} \).}
\end{table}
If we plot $I$ versus $sin(2\pi d/\lambda_g)$, we found that the result is close to a exponential graph (except the last data).
\begin{figure}[H]
\centering
\includegraphics[width=0.8\textwidth]{./media/lab1 raw I-V.png}
\caption{ $I$(A)-$sin(2\pi d/\lambda_g$) characteristics from the experiment.}
\label{fig:raw_iv}
\end{figure}
Hence, we can guess $I=C\cdot sin(\frac{2\pi d}{\lambda_g})^n$. A linear regression analysis was conducted.
\begin{figure}[H]
\centering
\includegraphics[width=0.9\textwidth]{./media/lab1.png}
\caption{Linear regression analysis of $\log \bar{I}$ vs $n \log \sin\left(2 \pi d / \lambda \right) + \log C$.}
\label{fig:regression}
\end{figure}
we get:
\[
n = 1.931 \pm 0.024 \quad (1.24\%)
\]
\section{Textbook Questions}
Here, include any questions from textbooks or exercises that are relevant to your topic.
\section{Conclusion}
Summarize the main findings and key points from the study.
\printbibliography
\end{document}