-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparams.py
99 lines (81 loc) · 5.23 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from functools import partial
from pathlib import Path
from typing import Any, Union, Optional, Iterable, MutableMapping, Callable, Mapping
from lir import LogitCalibrator, KDECalibrator, ELUBbounder, DummyLogOddsCalibrator, IsotonicCalibrator
from lir.transformers import PercentileRankTransformer, AbsDiffTransformer
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis as QDA, LinearDiscriminantAnalysis as LDA
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RandomizedSearchCV
from xgboost import XGBClassifier
from lrbenchmark.data.dataset import XTCDataset, GlassDataset, ASRDataset
from lrbenchmark.data.simulation import SynthesizedNormalDataset
from lrbenchmark.pairing import CartesianPairing, BalancedPairing
from lrbenchmark.transformers import DummyTransformer, PrecalculatedScorerASR, MeasurementPairScorer
PAIRING = {'cartesian': CartesianPairing, 'balanced': BalancedPairing}
SCORERS = {'precalculated_asr': PrecalculatedScorerASR,
'lda': partial(MeasurementPairScorer, LDA),
'qda': partial(MeasurementPairScorer, QDA),
'gb': partial(MeasurementPairScorer, GradientBoostingClassifier),
'rf': partial(MeasurementPairScorer,
lambda: RandomForestClassifier(
n_estimators=100,
class_weight='balanced')),
'logit': partial(MeasurementPairScorer,
lambda: LogisticRegression(solver='liblinear', class_weight='balanced', max_iter=500)),
'xgb': partial(MeasurementPairScorer, lambda: XGBClassifier(eval_metric='error', use_label_encoder=False)),
'rf_optim': partial(MeasurementPairScorer, lambda: RandomizedSearchCV(estimator=RandomForestClassifier(),
param_distributions={
'bootstrap': [True, False],
'max_depth': [10, 20, 30, 40, 50,
60, 70, 80, 90, 100,
None],
'max_features': ['auto', 'sqrt'],
'min_samples_leaf': [1, 2, 4],
'min_samples_split': [2, 5, 10],
'n_estimators': [5, 10, 20, 50,
100]}, n_iter=100,
cv=3))}
CALIBRATORS = {'logit': LogitCalibrator,
'elub_logit': partial(ELUBbounder, first_step_calibrator=LogitCalibrator()),
'kde': KDECalibrator,
'dummy': DummyLogOddsCalibrator,
'isotonic': IsotonicCalibrator}
DATASETS = {'asr': ASRDataset,
'xtc': XTCDataset,
'glass': GlassDataset,
'synthesized_normal': SynthesizedNormalDataset}
PREPROCESSORS = {'dummy': DummyTransformer,
'rank_transformer': PercentileRankTransformer,
'abs_diff': AbsDiffTransformer}
config_option_dicts = {'scorer': SCORERS,
'pairing': PAIRING,
'preprocessors': PREPROCESSORS,
'dataset': DATASETS,
'calibrator': CALIBRATORS}
def parse_config(config: Union[str, Path, Mapping[str, Any]],
parsers: Mapping[str, Mapping[Optional[str], Callable]]) -> MutableMapping[str, Any]:
"""
Recursively parse a `config` mapping consisting of serialized values of
built-in types (e.g. `str`, `int`, `list`, etc.) and deserialize them by
applying the appropriate callbacks in `parsers`.
This function iterates over each `(key, value)` pair in `config`. If the
`key` matches a `key` in `parsers` and `value` is itself a `Mapping`, the
corresponding callback in `parsers` (i.e. `parsers[key]`) is used to
instantiate a Python object from the serialized items in `value`.
:param config: Mapping[str, Any]
:param parsers: Optional[Mapping[str, Factory]]
:return: MutableMapping[str, Any]
"""
def parse_item(key: str, value: Any) -> Any:
if isinstance(value, Mapping):
value = dict(value)
name = value.pop('name', None)
value = parse_config(value, parsers)
if parsers and key in parsers and name in parsers[key]:
return parsers[key][name](**value)
return value
if isinstance(value, Iterable) and not isinstance(value, (str, bytes, bytearray)):
return [parse_item(key, v) for v in value]
return value
return {k: parse_item(k, v) for k, v in config.items()}