-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
51 lines (40 loc) · 1.72 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import pandas as pd
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from flask import Flask, request, jsonify
from sklearn.svm import SVC
import numpy as np
from flask_cors import CORS,cross_origin
import json
app = Flask(__name__)
CORS(app)
cors = CORS(app, resources={r"/api/*": {"origins": "http://localhost:3000"}})
data = pd.read_csv('Training1.csv')
data['prognosis'] = data['prognosis'].str.strip()
Y = data[['prognosis']]
X = data.drop(['prognosis'],axis=1)
# transform = preprocessing.StandardScaler()
# X = transform.fit_transform(X)
X_train,_, Y_train,_ = train_test_split( X, Y, test_size=0.2, random_state=101)
# parameters ={"C":[0.01,0.1,1],'penalty':['l2'], 'solver':['lbfgs']}
# lr=LogisticRegression()
# logreg_cv = GridSearchCV(lr, parameters, cv=10)
# logreg_cv.fit(X_train, Y_train)
svc_model = SVC()
svc_model.fit(X_train.values,Y_train)
@app.route('/predict', methods=['POST'])
@cross_origin()
def predict_disease():
# return jsonify({"disease": logreg_cv.predict(pd.DataFrame([request.get_json()]).values)[0]})
# print(svc_model.decision_function(pd.DataFrame([request.get_json()]).values))
disease_arr = request.get_json()['symptoms']
with open("symptoms.json", "r") as file:
data = json.load(file)
for i in disease_arr:
data[i]=1
# return jsonify({"disease": svc_model.predict(pd.DataFrame([request.get_json()]).values)[0], "score": '1'})
return jsonify({"disease": svc_model.predict(pd.DataFrame([data]).values)[0], "score": '1'})
if __name__ == '__main__':
app.run(debug=True)