-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetune_and_test_1.sh
44 lines (33 loc) · 1.99 KB
/
finetune_and_test_1.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
DATASET_NAME="sri/py150"
VIEWS=("random")
TRAIN_DECODER_ONLY=("false")
TRANSFORM_NAME="transforms.Replace"
for VIEWS_TYPE in "${VIEWS[@]}"; do
PRETRAINED_MODEL="pretrain_csn_hidden_identity_${VIEWS_TYPE}"
# # pretrain a seq2seq encoder on the csn python train set
# VIEWS=${VIEWS_TYPE} \
# DATASET=csn/python \
# MODEL_NAME=${PRETRAINED_MODEL} \
# time make pretrain-contracode
for DECODER_ONLY in "${TRAIN_DECODER_ONLY[@]}"; do
echo "CONFIG: views=${VIEWS_TYPE}; decoder_only=${DECODER_ONLY}"
FINETUNED_MODEL="finetuned_sri_hidden_identity_${VIEWS_TYPE}_decoder-only-${DECODER_ONLY}-epochs-10"
# # finetune the decoder for one epoch
# GPU=1 \
# MODEL_TYPE="seq2seq" \
# DATASET=${DATASET_NAME} \
# DECODER_ONLY=${DECODER_ONLY} \
# EPOCHS=10 \
# CHECKPOINT="${PRETRAINED_MODEL}/ckpt_pretrain_ep0100_step0075000.pth" \
# MODEL_NAME=${FINETUNED_MODEL} \
# time make finetune-contracode
# attack and test the trained model
ADVERSARIAL_MODEL="final-models/seq2seq/$DATASET_NAME/$FINETUNED_MODEL"
# no attack + test on full test set
./experiments/attack_and_test_seq2seq.sh 1 2 1 false 1 1 false 1 false false false v2-1-z_no_no-pgd_no_no-$TRANSFORM_NAME-$DATASET_NAME_SMALL-full $TRANSFORM_NAME 0.5 0.5 0.01 $DATASET_NAME 1 $ADVERSARIAL_MODEL $NUM_REPLACE 0 true
# z_1_random + u_optim (uwisc) attack + test on exact matches
./experiments/attack_and_test_seq2seq.sh 1 2 1 false 1 1 true 3 false false false v2-3-z_rand_1-pgd_3_no-$TRANSFORM_NAME-em $TRANSFORM_NAME 0.5 0.5 0.01 $DATASET_NAME 1 $ADVERSARIAL_MODEL $NUM_REPLACE 0 true
# z_1_random + u_optim (uwisc) attack + test on full test set
./experiments/attack_and_test_seq2seq.sh 1 2 1 false 1 1 true 3 false false false v2-3-z_rand_1-pgd_3_no-$TRANSFORM_NAME-$DATASET_NAME_SMALL-full $TRANSFORM_NAME 0.5 0.5 0.01 $DATASET_NAME 1 $ADVERSARIAL_MODEL $NUM_REPLACE 0 true
done
done