-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_selmu.py
216 lines (175 loc) · 7.46 KB
/
main_selmu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import copy
import os
from collections import OrderedDict
import matplotlib.pyplot as plt
import arg_parser
import evaluation
import torch
import torch.nn as nn
import torch.optim
import torch.utils.data
import unlearn
import utils
import numpy as np
from trainer import validate
from torch.utils.data import DataLoader
def norm_grad(x, p):
norm_value = torch.norm(x, p=p)
return (x.abs()**(p - 1)) * x.sign() / norm_value**(p - 1)
def l1_regularization(model):
params_vec = []
for param in model.parameters():
params_vec.append(param.view(-1))
return torch.linalg.norm(torch.cat(params_vec), ord=1)
def main():
args = arg_parser.parse_args()
if args.feq_to_bi > args.select_epochs:
args.feq_to_bi = args.select_epochs
gaps = {"UA": []}
w_records = []
bi_w_records = []
w_norms = []
bi_w_norms = []
select_epoch_losses = []
if torch.cuda.is_available():
torch.cuda.set_device(int(args.gpu))
device = torch.device(f"cuda:{int(args.gpu)}")
else:
device = torch.device("cpu")
os.makedirs(args.save_dir, exist_ok=True)
if args.seed:
utils.setup_seed(args.seed)
# prepare dataset
(
model,
train_set,
valid_set,
test_set
) = utils.setup_model_indexdataset(args)
model.cuda()
val_loader = DataLoader(
valid_set,
batch_size=args.batch_size,
shuffle=False
)
test_loader = DataLoader(
test_set,
batch_size=args.batch_size,
shuffle=False
)
if args.resume:
checkpoint = unlearn.load_unlearn_checkpoint(model, device, args)
if args.resume and checkpoint is not None:
model, evaluation_result = checkpoint
else:
checkpoint = torch.load(args.cp_path, map_location=device)
if "state_dict" in checkpoint.keys():
checkpoint = checkpoint["state_dict"]
if "retrain" not in args.unlearn:
model.load_state_dict(checkpoint, strict=True)
mask = None
if args.mask_path:
mask = torch.load(args.mask_path)
criterion = nn.CrossEntropyLoss(reduction="none")
train_full_loader, forget_loader, remain_loader, w = utils.update_w(train_set,
class_to_replace=args.class_to_replace,
num_indexes_to_replace=args.num_indexes_to_replace,
seed=args.seed,
batch_size=args.batch_size,
shuffle=True,
args=args
)
w = w.cuda()
evaluation_result = None
for epoch in range(args.select_epochs):
if "retrain" in args.unlearn:
print("->->->->->->->->->-> Randomly initialize model <-<-<-<-<-<-<-<-<-<-")
model.apply(utils.weights_init)
else:
print("->->->->->->->->->-> Reload model <-<-<-<-<-<-<-<-<-<-")
model.load_state_dict(checkpoint, strict=False)
unlearn_method = unlearn.get_unlearn_method(args.unlearn)
if args.unlearn == "w_RL" or args.unlearn == "w_boundary_shrink" or args.unlearn == "w_boundary_expanding" or args.unlearn == "w_scrub":
pre_data_loaders = OrderedDict(
retain=remain_loader, forget=forget_loader, val=val_loader, test=test_loader
)
unlearn_method(pre_data_loaders, model, criterion, args, w, mask)
else:
unlearn_method(train_full_loader, model, criterion, args, w, mask)
if args.mode == "optm":
w, select_epoch_loss = unlearn.optimize_select(train_full_loader, model, criterion, args, w)
elif args.mode == "re_optm":
w, select_epoch_loss = unlearn.reverse_optimize_select(train_full_loader, model, criterion, args, w)
select_epoch_losses.append(select_epoch_loss.item())
topk_indices = torch.topk(w, args.num_indexes_to_replace)[1]
bi_w = torch.zeros_like(w)
bi_w[topk_indices] = 1
w_records.append(w.cpu().numpy())
bi_w_records.append(bi_w.cpu().numpy())
_, forget_loader, remain_loader, _ = utils.update_w(train_set,
w=bi_w,
class_to_replace=args.class_to_replace,
seed=args.seed,
batch_size=args.batch_size,
shuffle=True,
args=args)
if (epoch + 1) % args.feq_to_bi == 0:
w = bi_w
if epoch == args.select_epochs - 1:
_, forget_loader, remain_loader, _ = utils.update_w(train_set,
w=w,
class_to_replace=args.class_to_replace,
seed=args.seed,
batch_size=args.batch_size,
shuffle=True,
args=args)
w_path = os.path.join(args.save_dir, "select_weight.pth.tar")
gaps['w'] = w_records
gaps['bi_w'] = bi_w_records
gaps['loss'] = select_epoch_losses
torch.save(gaps, w_path)
# Evaluate
unlearn_data_loaders = OrderedDict(
retain=remain_loader, forget=forget_loader, val=val_loader, test=test_loader
)
forget_dataset = forget_loader.dataset
retain_dataset = remain_loader.dataset
if evaluation_result is None:
evaluation_result = {}
if "new_accuracy" not in evaluation_result:
accuracy = {}
for name, loader in unlearn_data_loaders.items():
utils.dataset_convert_to_test(loader.dataset, args)
val_acc = validate(loader, model, nn.CrossEntropyLoss(), args)
accuracy[name] = val_acc
print(f"{name} acc: {val_acc}")
evaluation_result["accuracy"] = accuracy
unlearn.save_unlearn_checkpoint(model, evaluation_result, args)
for deprecated in ["MIA", "SVC_MIA", "SVC_MIA_forget"]:
if deprecated in evaluation_result:
evaluation_result.pop(deprecated)
"""forget efficacy MIA:
in distribution: retain
out of distribution: test
target: (, forget)"""
if "SVC_MIA_forget_efficacy" not in evaluation_result:
test_len = len(test_loader.dataset)
forget_len = len(forget_dataset)
retain_len = len(retain_dataset)
utils.dataset_convert_to_test(retain_dataset, args)
utils.dataset_convert_to_test(forget_loader, args)
utils.dataset_convert_to_test(test_loader, args)
shadow_train = torch.utils.data.Subset(retain_dataset, list(range(test_len)))
shadow_train_loader = torch.utils.data.DataLoader(
shadow_train, batch_size=args.batch_size, shuffle=False
)
evaluation_result["SVC_MIA_forget_efficacy"] = evaluation.SVC_MIA(
shadow_train=shadow_train_loader,
shadow_test=test_loader,
target_train=None,
target_test=forget_loader,
model=model,
)
unlearn.save_unlearn_checkpoint(model, evaluation_result, args)
if __name__ == "__main__":
main()