This repository has been archived by the owner on Apr 7, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmain.py
208 lines (158 loc) · 8.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse
import os
import json
import datetime
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModel
def get_args():
parser = argparse.ArgumentParser(description='ChatGLM Arguments')
parser.add_argument('--path', default='chatglm-6b-int4', help='The path of ChatGLM model')
return parser.parse_args()
args = get_args()
if not os.path.isdir(args.path):
raise FileNotFoundError('Model not found')
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
tokenizer = AutoTokenizer.from_pretrained(args.path, trust_remote_code=True)
if device == 'cuda':
model = AutoModel.from_pretrained(args.path, trust_remote_code=True).half().cuda()
else:
model = AutoModel.from_pretrained(args.path, trust_remote_code=True).float()
model = model.eval()
def parse_text(text):
lines = text.split('\n')
for i, line in enumerate(lines):
if '```' in line:
item = line.split('`')[-1]
if item:
lines[i] = f'<pre><code class="{item}">'
else:
lines[i] = '</code></pre>'
else:
if i > 0:
line = line.replace('<', '<').replace('>', '>')
lines[i] = f'<br/>{line}'
return ''.join(lines)
def chat_wrapper(query, styled_history, history, max_length, top_p, temperature, memory_limit):
if query == '':
return [], [], '', *gr_hide()
if memory_limit == 0:
history = []
styled_history = []
elif memory_limit > 0:
history = history[-memory_limit:]
styled_history = styled_history[-memory_limit:]
flag = True
styled_history_pos = 0
for message, history in model.stream_chat(tokenizer, query, history=history,
max_length=max_length, top_p=top_p, temperature=temperature):
if flag:
styled_history.append((parse_text(query), parse_text(message)))
styled_history_pos = len(styled_history) - 1
flag = False
else:
styled_history[styled_history_pos] = (parse_text(query), parse_text(message))
yield styled_history, history, '', *gr_hide()
def regenerate_wrapper(styled_history, history, max_length, top_p, temperature, memory_limit):
if not history:
return [], [], '', *gr_hide()
styled_history, history, query, _, _, _ = edit_wrapper(styled_history, history)
for ret in chat_wrapper(query, styled_history, history, max_length, top_p, temperature, memory_limit):
yield ret
def edit_wrapper(styled_history, history):
if len(history) == 0:
return [], [], ''
query = history[-1][0]
history = history[:-1]
styled_history = styled_history[:-1]
return styled_history, history, query, *gr_hide()
def reset_history():
return [], [], '', *gr_hide()
def save_history(history):
os.makedirs('log', exist_ok=True)
dict_list = [{'input': q, 'output': a} for q, a in history]
with open(f'log/{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}.json', 'w', encoding='utf-8') as f:
json.dump(dict_list, f, ensure_ascii=False, indent=2)
def save_config(max_length=2048, top_p=0.7, temperature=0.95, memory_limit=-1.0):
with open('config.json', 'w') as f:
json.dump({'max_length': max_length, 'top_p': top_p, 'temperature': temperature, 'memory_limit': memory_limit}, f, indent=2)
def load_history(file, styled_history, history):
current_styled_history, current_history = styled_history.copy(), history.copy()
try:
with open(file.name, 'r', encoding='utf-8') as f:
dict_list = json.load(f)
history = [(item['input'], item['output']) for item in dict_list]
styled_history = [(parse_text(item['input']), parse_text(item['output'])) for item in dict_list]
except BaseException:
return current_styled_history, current_history, ''
return styled_history, history, '', *gr_hide()
def gr_show_and_load(history, evt: gr.SelectData):
if evt.index[1] == 0:
label = f'修改提问{evt.index[0]}:'
else:
label = f'修改回答{evt.index[0]}:'
return {'visible': True, '__type__': 'update'}, {'value': history[evt.index[0]][evt.index[1]], 'label': label, '__type__': 'update'}, evt.index
def update_history(styled_history, history, log, idx):
if log == '':
return styled_history, history, {'visible': True, '__type__': 'update'}, {'value': history[idx[0]][idx[1]], '__type__': 'update'}, idx
def swap_value(lst, idx, value):
lst[idx[0]] = tuple(value if j == idx[1] else elem for j, elem in enumerate(lst[idx[0]]))
return lst
styled_history = swap_value(styled_history, idx, parse_text(log))
history = swap_value(history, idx, log)
return styled_history, history, *gr_hide()
def gr_hide():
return {'visible': False, '__type__': 'update'}, {'value': '', 'label': '', '__type__': 'update'}, []
with gr.Blocks() as demo:
if not os.path.isfile('config.json'):
save_config()
with open('config.json', 'r', encoding='utf-8') as f:
configs = json.loads(f.read())
gr.Markdown('''<h1><center>ChatGLM WebUI</center></h1>''')
gr.Markdown('''`Max Length` 是生成文本时的长度限制,`Top P` 控制输出文本中概率最高前 p 个单词的总概率,`Temperature` 控制生成文本的多样性和随机性。<br/>`Top P` 变小会生成更多样和不相关的文本;变大会生成更保守和相关的文本。<br/>`Temperature` 变小会生成更保守和相关的文本;变大会生成更奇特和不相关的文本。<br/>`Memory Limit` 对话记忆轮数,`-1` 为无限长,限制记忆可减小显存占用。''')
with gr.Row():
max_length = gr.Slider(minimum=4.0, maximum=4096.0, step=4.0, label='Max Length', value=configs['max_length'])
top_p = gr.Slider(minimum=0.01, maximum=1.0, step=0.01, label='Top P', value=configs['top_p'])
temperature = gr.Slider(minimum=0.01, maximum=2.0, step=0.01, label='Temperature', value=configs['temperature'])
memory_limit = gr.Slider(minimum=-1.0, maximum=20.0, step=1.0, label='Memory Limit', value=configs['memory_limit'])
save_conf = gr.Button('保存设置')
gr.Markdown('''<h2>提示:点击对话可以进行修改</h2>''')
state = gr.State([])
chatbot = gr.Chatbot(elem_id='chatbot', show_label=False)
with gr.Row(visible=False) as edit_log:
with gr.Column():
log = gr.Textbox()
with gr.Row():
submit_log = gr.Button('保存')
cancel_log = gr.Button('取消')
log_idx = gr.State([])
message = gr.Textbox(placeholder='输入内容', label='问:')
with gr.Row():
submit = gr.Button('提交')
edit = gr.Button('修改上一问题')
regen = gr.Button('重新生成')
delete = gr.Button('清空聊天')
with gr.Row():
save = gr.Button('保存对话(在 `log` 文件夹下)')
load = gr.UploadButton('读取对话', file_types=['file'], file_count='single')
input_list = [message, chatbot, state, max_length, top_p, temperature, memory_limit]
output_list = [chatbot, state, message]
edit_list = [edit_log, log, log_idx]
save_conf.click(save_config, inputs=input_list[3:])
load.upload(load_history, inputs=[load, chatbot, state], outputs=output_list + edit_list)
save.click(save_history, inputs=[state])
message.submit(chat_wrapper, inputs=input_list, outputs=output_list + edit_list)
submit.click(chat_wrapper, inputs=input_list, outputs=output_list + edit_list)
edit.click(edit_wrapper, inputs=input_list[1:3], outputs=output_list + edit_list)
regen.click(regenerate_wrapper, inputs=input_list[1:], outputs=output_list + edit_list)
delete.click(reset_history, outputs=output_list + edit_list)
chatbot.select(gr_show_and_load, inputs=[state], outputs=edit_list)
edit_kwargs = {'inputs': [chatbot, state, log, log_idx], 'outputs': [chatbot, state] + edit_list}
log.submit(update_history, **edit_kwargs)
submit_log.click(update_history, **edit_kwargs)
cancel_log.click(gr_hide, outputs=edit_list)
if __name__ == '__main__':
demo.queue(concurrency_count=5, max_size=20).launch(debug=True)